Теоретические основы гидравлики и теплотехники. Ртищева А.С.

Теоретические основы гидравлики. Ртищева А.С. 2007 г

Теоретические основы гидравлики и теплотехники. Ртищева А.С.

А. С. Ртищева

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ГИДРАВЛИКИ И ТЕПЛОТЕХНИКИ

Ульяновск 2007

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Ульяновский государственный технический университет

А. С. Ртищева

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ГИДРАВЛИКИ И ТЕПЛОТЕХНИКИ

Учебное пособие

для студентов, обучающихся по специальности: 28020265 «Инженерная защита окружающей среды»

УДК 621

ББК 31.31

К88

Рецензенты: к.ф-м.н., профессор Пугачев Ю. Ф. (Ульяновское высшее авиационное училище гражданской авиации); начальник сектора отдела развития теплового рынка ОАО «Волжская ТГК» Григорьев Н. В.

Утверждено редакционно-издательским советом университета в качестве учебного пособия

Ртищева А. С.

Теоретические основы гидравлики и теплотехники: Учебное пособие. – Ульяновск, УлГТУ, 2007. – 171 c.

ISBN 5-06-003712-6

Изложены основы гидравлики, технической термодинамики, теории теплообмена. Рассмотрены основы гидростатики, кинематика и динамика движущихся потоков, термические и энергетические характеристики идеальных и реальных газов, основные виды теплообмена, теория подобия гидродинамических и теплообменных процессов.

Пособие предназначено для студентов обучающихся по специальностям: 28020265 «Инженерная защита окружающей среды». Оно может быть использовано студентами других специальностей, изучающих дисциплины «Гидравлика» и «Теплотехника».

УДК 621

ББК 31.31

ISBN 5-06-003712-6© Оформление. УлГТУ, 2007

3

ОГЛАВЛЕНИЕ

Предисловие……………………………………………………………………… 6 Основные обозначения…..……………………………………………………… 7 Введение…………………………………………………………………………… 8 Часть I. ОСНОВЫ ГИДРАВЛИКИ…………………………………………….. 9

1.ФИЗИЧЕСКИЕ СВОЙСТВА ЖИДКОСТЕЙ…………………….………. 9

1.1.Основные физические свойства жидкостей………………………9
1.2.Модели жидкости.…………………………………………………12

2.ГИДРОСТАТИКА…………………………………………………………. 13

2.1.Дифференциальные уравнения равновесия жидкости…………… 13

2.2.Гидростатический закон. Гидростатическое давление………….. 14

2.3.Условия равновесия жидкостей в сообщающихся сосудах……… 15

2.4.Простейшие гидравлические машины……………………………. 16

2.5. Основные методы и приборы измерения давления……………… 17

2.6.Закон Архимеда…………………………………………………….. 19

2.7.Равновесие и устойчивость тел, погруженных в жидкость. Равновесие тела, плавающего на поверхности жидкости……….. 19

2.8.Равновесие земной атмосферы……………………………………. 22

3.ГИДРОДИНАМИКА…..…………………………………………………… 23

3.1.Основы кинематики………………………………………………… 23

3.1.1.Линии и трубки тока. Уравнение расхода………………..23
3.1.2.Движение жидкой частицы сплошной среды……………24

3.1.3.Вихревое и безвихревое течение…………………………. 27

3.1.4.Циркуляция скорости………………………………………. 28

3.2.Основы динамики………………………………………………….. 29

3.2.1.Силы, действующие на частицу сплошной среды. Напряженное состояние элементарного объема. Закон трения Стокса……………………………………………… 29

3.2.2.Дифференциальное уравнение неразрывности………….. 31

3.2.3.Дифференциальные уравнения переноса количества движения. Уравнения Эйлера и Навье-Стокса………….. 33

3.2.4.Дифференциальное уравнение энергии………………….. 38

3.3.Движение вязкого потока………………………………………….. 41

3.3.1.Режимы течения жидкости……………………………….. 41

3.3.2.Особенности турбулентного течения……………………. 43

3.3.3.Уравнения движения и энергии для ламинарного и турбулентного режима течения жидкости……………….. 44

3.3.4.Модели турбулентности…………………………………… 48

3.4.Движение жидкости с малой вязкостью………………………….. 51

3.4.1.Пограничный слой………………………………………… 51

3.4.2.Движение невязкого потока………………………………. 57

4.ГИДРАВЛИЧЕСКИЕ СОПРОТИВЛЕНИЯ……………………………… 67

4.1.Сопротивления по длине…………………………………………… 67

4

4.2.Местные гидравлические сопротивления………………………… 69 Часть II. ОСНОВЫ ТЕРМОДИНАМИКИ…………………………………….. 71

5.ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА И ЕЕ ПАРАМЕТРЫ…………. 71

5.1.Термодинамическая система и ее состояние…………………….. 71

5.2.Термические параметры состояния……………………………….. 71

6.ИДЕАЛЬНЫЙ ГАЗ………………………………………………………… 74

6.1.Уравнение состояния идеального газа……………………………. 74

6.2.Смеси идеальных газов……………………………………………. 74

7.ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТЕРМОДИНАМИЧЕСКИХ СИСТЕМ…………………………………… 76

7.1.Внутренняя энергия. Энтальпия…………………………………… 76

7.2.Работа. Теплота…………………………………………………….. 76

7.3.Теплоемкость……………………………………………………….. 78

8.ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ………………………………. 80

8.1.Формулировка первого начала термодинамики…………………. 80

8.2.Первое начало термодинамики для основных термодинамических процессов……………………………………. 81

9.ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ………………………………. 88

9.1.Формулировка второго начала термодинамики…………………. 88

9.2.Цикл Карно…………………………………………………………. 88

9.3.Интеграл Клаузиуса………………………………………………… 92

9.4.Энтропия и термодинамическая вероятность……………………. 94

10.РЕАЛЬНЫЙ ГАЗ………………………………………………………….. 95

10.1.Уравнения состояния реальных газов…………………………….. 95

10.2.Пары. Парообразование при постоянном давлении……………… 97

10.3.Уравнение Клайперона-Клаузиуса………………………………… 100

10.4.pT-диаграмма фазовых переходов………………………………… 101

Часть III. ОСНОВЫ ТЕОРИИ ТЕПЛОМАССООБМЕНА…………………… 102

11.ОСНОВНЫЕ ПОНЯТИЯ И ЗАКОНЫ ТЕОРИИ ТЕПЛОМАССООБМЕНА………………………………………………… 103

11.1.Виды теплообмена…………………………………………………. 103

11.2.Основные понятия и законы молекулярного и конвективного теплообмена………………………………………………………… 104

12.ОСНОВЫ ТЕОРИИ ПОДОБИЯ ФИЗИЧЕСКИХ ЯВЛЕНИЙ………….. 108

12.1.Математическая формулировка задач гидрогазодинамики и теплопередачи……………………………………………………… 108

12.2.Основы теории подобия физических процессов…………………. 108

12.3.Определяющий размер и определяющая температура………….. 111

12.4.Выявление обобщенных переменных из математической формулировки задачи……………………………………………… 112

12.5.Получение чисел подобия на основе анализа размерностей……. 115

13.ТЕПЛОПРОВОДНОСТЬ И ТЕПЛОПЕРЕДАЧА ПРИ СТАЦИОНАРНОМ РЕЖИМЕ……………………………………………. 118

13.1.Теплопроводность веществ………………………………………… 118

5
13.2. Теплопроводность и теплопередача через плоскую стенку……119

13.3.Теплопроводность и теплопередача через цилиндрическую стенку……………………………………………………………….. 122

13.4.Теплопроводность и теплопередача через шаровую стенку……. 125

14. ТЕПЛОПРОВОДНОСТЬ ПРИ НЕСТАЦИОНАРНОМ РЕЖИМЕ……128
14.1. Условия подобия нестационарных температурных полей………128

14.2.Нестационарная теплопроводность плоской стенки…………….. 129

15.ТЕПЛООТДАЧА…………………………………………………………… 133

15.1.Факторы, влияющие на интенсивность теплоотдачи……………. 133

15.2.Связь между теплоотдачей и трением……………………………. 134

15.3.Законы трения и теплообмена для турбулентного пограничного слоя………………………………………………………………….. 137

15.4. Теплоотдача при вынужденной конвекции плоской пластины… 138

15.4.1.Теплоотдача пластины при ламинарном пограничном слое……………………………………………………….. 138

15.4.2.Теплоотдача пластины при турбулентном пограничном слое………………………………………… 142

15.5.Теплоотдача при внешнем обтекании одиночной трубы и трубных пучков……………………………………………………… 144

15.6. Теплоотдача при течении жидкости в трубах и каналах…………147
15.7. Теплоотдача при свободной конвекции……………………………149
15.8. Теплоотдача при фазовых превращениях…………………………150

15.8.1.Теплоотдача при конденсации………………………….. 150

15.8.2.Теплоотдача при кипении……………………………….. 153

15.8.3.Теплоотдача при кипении в условиях движения жидкости по трубам……………………………………… 155

15.9.Интенсификация теплоотдачи……………………………………… 156

16.РАДИАЦИОННЫЙ ТЕПЛООБМЕН……………………………………… 158

16.1. Основные понятия и определения………………………………… 158

16.2.Основные законы радиационного теплообмена………………….. 160

16.3.Радиационный теплообмен между твердыми телами, разделенными прозрачной средой………………………………… 162

16.4.Защитные экраны…………………………………………………… 163

16.5.Радиационный теплообмен между газом и оболочкой…………… 164

17.ТЕПЛООБМЕННЫЕ АППАРАТЫ……………………………………….. 165

17.1.Основные виды теплообменных аппаратов………………………. 165

17.2.Тепловой расчет рекуперативного теплообменного аппарата…… 165

17.3.О гидравлическом расчете рекуперативного теплообменного аппарата……………………………………………………………… 169

17.4.Способы повышения эффективности теплообменных аппаратов……………………………………………………………. 170

Список литературы……………………………………………………………… 171

6

ПРЕДИСЛОВИЕ

Высокие темпы развития техники, тесная связь научных исследований с современной промышленностью делают необходимым подготовку высококвалифицированных кадров по специальности 28020265 «Инженерная защита окружающей среды».

Специалистам в этой области часто приходится иметь дело с движущимися потоками жидкости и газа в различных системах, в том числе системах очистки.

В предлагаемом учебном пособии содержится необходимый теоретический материал для расчетов течения и теплоотдачи потоков жидкости и газа.

Существующая в настоящее время литература, которая может быть использована в учебном процессе, либо не ориентирована на студентов специальности 28020265 «Инженерная защита окружающей среды», либо отражает лишь некоторые разделы дисциплины.

Предлагаемое учебное пособие в определенной степени призвано восполнить этот пробел.

Оно написано на основе прочитанного автором курса «Гидравлика и теплотехника» для студентов энергетического факультета Ульяновского государственного технического университета.

Пособие предназначено для студентов специальности 28020265 «Инженерная защита окружающей среды». Оно также может быть использовано студентами других направлений.

7

ОСНОВНЫЕ ОБОЗНАЧЕНИЯ

x, y, zкоординаты декартовой системы;
wx, wy, wz −проекции скорости на координатные оси x, y, z соответственно;
αкоэффициент теплоотдачи;
ρплотность;
λкоэффициент теплопроводности;
µдинамический коэффициент вязкости;
νкинематический коэффициент вязкости;

τ− время; касательное напряжение трения;

σ− нормальное напряжение трения;

aкоэффициент температуропроводности; скорость звука;
uудельная внутренняя энергия (внутренняя энергия 1 кг
вещества);
hудельная энтальпия (энтальпия 1 кг вещества);
qудельный тепловой поток (плотность теплового потока);
удельное количество теплоты (количество теплоты 1 кг
вещества);
lудельная работа (работа 1 кг вещества);
степлоемкость;
pдавление;
υудельный объем (объем 1 кг вещества);
tтемпература в 0С;
Tтемпература в K;
Rгазовая постоянная;
универсальная газовая постоянная;
Q −тепловой поток;
количество теплоты;
Lработа;
Arчисло Архимеда;
Grчисло Грасгофа;
Foчисло Фурье;
Knчисло Кнудсена;
Euчисло Эйлера;
Reчисло Рейнольдса;
Nuчисло Нуссельта;
M −число Маха;
Peчисло Пекле;
Prчисло Прандтля;
ShЧисло Струхаля;
Stчисло Стантона.

8

ВВЕДЕНИЕ

Гидравлика – это наука, изучающая законы равновесия и движения жидкостей. Гидравлику подразделяют на гидростатику и гидродинамику. Гидростатика изучает законы равновесия жидкостей, а гидродинамика – законы движения жидкости.

Основоположником гидравлики считается Архимед (250 г. до н. э.), который занимался вопросами гидростатики и плавания. Знаменитые открытия

иизобретения, такие как центробежный насос, парашют, анемометр были сделаны еще в эпоху Возрождения знаменитым художником и инженером Леонардо да Винчи. Большой вклад в становлении гидравлики как науки сделан Галилеем, Торричелли, Паскалем, Бернулли, Эйлером, Рейнольдсом, Прантлем, Колмогоровым и др.

Гидравлика непосредственно связана с интенсивно развивающейся в настоящее время наукой – теплотехникой. Основу теплотехники составляют термодинамика и теория тепломассообмена.

Термодинамика – это наука, которая изучает законы взаимопреобразования и передачи энергии.

Исторически термодинамика возникла в результате изучения сравнительно узкого круга вопросов, связанных с теорией работы тепловых двигателей. Большой вклад в становление и развитие термодинамики был сделан Карно, Клапейроном, Клаузиусом, Менделеевым и др.

Теория тепломассообмена рассматривает процессы переноса теплоты в пространстве с неоднородным распределением температур, часто сопровождающееся при этом переносом вещества. Основы теории тепломассообмена были заложены в XVIII – XIX вв. Большой вклад в становлении и развитии науки был сделан Михеевым, Кутателадзе, Леонтьевым

идр.

9

Часть I. ОСНОВЫ ГИДРАВЛИКИ

1. ФИЗИЧЕСКИЕ СВОЙСТВА ЖИДКОСТЕЙ

1.1. Основные физические свойства жидкостей

Обычно под общим названием жидкости объединяют капельные жидкости (вода, спирт, керосин и др.) и газы (воздух, метан и др.).

Плотность Плотностью называется физическая величина, численно равная

отношению массы тела к его объему:

где m – масса жидкости, кг; V – объем сосуда, который занимает жидкость, м3. Сжимаемость Сжимаемостью называется свойство жидкости изменять свой объем при

изменении давления и температуры.

Сжимаемость характеризуется коэффициентом объемного сжатия βV,

которое определяет относительное уменьшение объема жидкости при увеличении давления:

где V0 – начальный объем, м3; dV – элементарное изменение объема, м3; dp – элементарное изменение давления, Па.

Температурное расширение Температурное расширение жидкостей характеризуется коэффициентом

температурного расширения βT, определяющим увеличение объема жидкости при повышении температуры:

где dT – элементарное изменение температуры, К. Силы внутреннего трения (силы вязкости)

При движении реальных жидкостей возникают касательные силы трения. В плоском потоке с поперечным сдвигом касательное напряжение трения

выражается законом Ньютона:

где µ – динамический коэффициент вязкости, Па с. Для реальных жидкостей и газов µ зависит от температуры и давления (рис. 1.1).

Зависимость µ от температуры представлена формулой Сатерленда:

Источник: https://studfile.net/preview/1190529/

Теоретические основы гидравлики и теплотехники, Ртищева А.С., 2007

Теоретические основы гидравлики и теплотехники. Ртищева А.С.

  • Книги и учебники →
  • Книги по физике

СкачатьЕще скачатьСмотреть Купить бумажную книгуКупить электронную книгуНайти похожие материалы на других сайтахКак открыть файлКак скачатьПравообладателям (Abuse, DMСA)Теоретические основы гидравлики и теплотехники, Ртищева А.С., 2007.   Изложены основы гидравлики, технической термодинамики, теории теплообмена. Рассмотрены основы гидростатики, кинематика и динамика движущихся потоков, термические и энергетические характеристики идеальных и реальных газов, основные виды теплообмена, теория подобия гидродинамических и теплообменных процессов.Пособие предназначено для студентов обучающихся по специальностям: 28020265 «Инженерная защита окружающей среды». Оно может быть использовано студентами других специальностей, изучающих дисциплины «Гидравлика» и «Теплотехника».
Модели жидкости.С целью упрощения решения многих задач вместо реальной жидкости рассматривают ту или иную модель жидкости, которая обладает лишь некоторыми свойствами реальных жидкостей. Эти свойства являются определяющими в решаемой задаче, поэтому подобные упрощения не дают существенных погрешностей определения искомых величин.Рассмотрим основные существующие модели жидкости.Идеальная жидкость — это жидкость, лишенная вязкости.Несжимаемая жидкость — это жидкость, не изменяющая плотности при изменении давления.Совершенная жидкость — это несжимаемая жидкость, в которой силы сцепления между молекулами отсутствуют, а собственный объем молекул равен нулю.Совершенный газ — это сжимаемая жидкость (газ), в которой силы сцепления между молекулами отсутствуют, а собственный объем молекул равен нулю.Идеальный газ — совершенный газ. лишенный вязкости.Бароклинная жидкость — это газ. плотность которого является функцией давления и температуры.Баротропная жидкость — это газ. у которого плотность зависит только от давления.

ОГЛАВЛЕНИЕ

Предисловие Основные обозначения Введение

Часть I. ОСНОВЫ ГИДРАВЛИКИ

1. ФИЗИЧЕСКИЕ СВОЙСТВА ЖИДКОСТЕЙ 1.1. Основные физические свойства жидкостей 1.2. Модели жидкости

2. ГИДРОСТАТИКА

2.1. Дифференциальные уравнения равновесия жидкости 2.2. Гидростатический закон. Гидростатическое давление 2.3. Условия равновесия жидкостей в сообщающихся сосудах 2.4. Простейшие гидравлические машины 2.5. Основные методы и приборы измерения давления 2.6. Закон Архимеда 2.7. Равновесие и устойчивость тел. погруженных в жидкость. Равновесие тела, плавающего на поверхности жидкости 2.8. Равновесие земной атмосферы

3. ГИДРОДИНАМИКА

3.1. Основы кинематики 3.1.1. Линии и трубки тока. Уравнение расхода 3.1.2. Движение жидкой частицы сплошной среды 3.1.3. Вихревое и безвихревое течение 3.1.4. Циркуляция скорости 3.2. Основы динамики 3.2.1. Силы, действующие на частицу сплошной среды. Напряженное состояние элементарного объема. Закон трения Стокса 3.2.2. Дифференциальное уравнение неразрывности 3.2.3. Дифференциальные уравнения переноса количества движения. Уравнения Эйлера и Навье-Стокса 3.2.4. Дифференциальное уравнение энергии 3.3. Движение вязкого потока 3.3.1. Режимы течения жидкости 3.3.2. Особенности турбулентного течения 3.3.3. Уравнения движения и энергии для ламинарного и турбулентного режима течения жидкости 3.3.4. Модели турбулентности 3.4. Движение жидкости с малой вязкостью 3.4.1. Пограничный слой 3.4.2. Движение невязкого потока

4. ГИДРАВЛИЧЕСКИЕ СОПРОТИВЛЕНИЯ

4.1. Сопротивления по длине 4.2. Местные гидравлические сопротивления

Часть II. ОСНОВЫ ТЕРМОДИНАМИКИ

5. ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА И ЕЕ ПАРАМЕТРЫ 5.1. Термодинамическая система и ее состояние 5.2. Термические параметры состояния

6. ИДЕАЛЬНЫЙ ГАЗ

6.1. Уравнение состояния идеального газа 6.2. Смеси идеальных газов

7. ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТЕРМОДИНАМИЧЕСКИХ СИСТЕМ

7.1. Внутренняя энергия. Энтальпия 7.2. Работа. Теплота 7.3. Теплоемкость

8. ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ

8.1. Формулировка первого начала термодинамики 8.2. Первое начало термодинамики для основных термодинамических процессов

9. ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

9.1. Формулировка второго начала термодинамики 9.2. Цикл Карно 9.3. Интеграл Клаузиуса 9.4. Энтропия и термодинамическая вероятность 10. РЕАЛЬНЫЙ ГАЗ 10.1. Уравнения состояния реальных газов 10.2. Пары. Парообразование при постоянном давлении 10.3. У равнение Клайперона-Клаузиуса 10.4. pТ-диаграмма фазовых переходов

Часть III. ОСНОВЫ ТЕОРИИ ТЕПЛОМАССООБМЕНА

11. ОСНОВНЫЕ ПОНЯТИЯ И ЗАКОНЫ ТЕОРИИ ТЕПЛОМАССООБМЕНА 11.1. Виды теплообмена 11.2. Основные понятия и законы молекулярного и конвективного теплообмена

12. ОСНОВЫ ТЕОРИИ ПОДОБИЯ ФИЗИЧЕСКИХ ЯВЛЕНИЙ

12.1. Математическая формулировка задач гидрогазодинамики и теплопередачи 12.2. Основы теории подобия физических процессов 12.3. Определяющий размер и определяющая температура 12.4. Выявление обобщенных переменных из математической формулировки задачи 12.5. Получение чисел подобия на основе анализа размерностей

13. ТЕПЛОПРОВОДНОСТЬ И ТЕПЛОПЕРЕДАЧА ПРИ СТАЦИОНАРНОМ РЕЖИМЕ

13.1. Теплопроводность веществ 13.2. Теплопроводность и теплопередача через плоскую стенку 13.3. Теплопроводность и теплопередача через цилиндрическую стенку 13.4. Теплопроводность и теплопередача через шаровую стенку

14. ТЕПЛОПРОВОДНОСТЬ ПРИ НЕСТАЦИОНАРНОМ РЕЖИМЕ

14.1. Условия подобия нестационарных температурных полей 14.2. Нестационарная теплопроводность плоской стенки

15. ТЕПЛООТДАЧА

15.1. Факторы, влияющие на интенсивность теплоотдачи 15.2. Связь между теплоотдачей и трением 15.3. Законы трения и теплообмена для турбулентного пограничного слоя 15.4. Теплоотдача при вынужденной конвекции плоской пластины 15.4.1. Теплоотдача пластины при ламинарном пограничном слое 15.4.2. Теплоотдача пластины при турбулентном пограничном слое 15.5. Теплоотдача при внешнем обтекании одиночной трубы и трубных пучков 15.6. Теплоотдача при течении жидкости в трубах и каналах 15.7. Теплоотдача при свободной конвекции 15.8. Теплоотдача при фазовых превращениях 15.8.1. Теплоотдача при конденсации 15.8.2. Теплоотдача при кипении 15.8.3. Теплоотдача при кипении в условиях движения жидкости по трубам 15.9. Интенсификация теплоотдачи

16. РАДИАЦИОННЫЙ ТЕПЛООБМЕН

16.1. Основные понятия и определения 16.2. Основные законы радиационного теплообмена 16.3. Радиационный теплообмен между твердыми телами, разделенными прозрачной средой 16.4. Защитные экраны 16.5. Радиационный теплообмен между газом и оболочкой

17. ТЕПЛООБМЕННЫЕ АППАРАТЫ

17.1. Основные виды теплообменных аппаратов 17.2. Тепловой расчет рекуперативного теплообменного аппарата 17.3. О гидравлическом расчете рекуперативного теплообменного аппарата 17.4. Способы повышения эффективности теплообменных аппаратов Список литературы.
Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Теоретические основы гидравлики и теплотехники, Ртищева А.С., 2007 — fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf

Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу

Скачать книгу Теоретические основы гидравлики и теплотехники, Ртищева А.С., 2007 — doc — depositfiles.

Скачать книгу Теоретические основы гидравлики и теплотехники, Ртищева А.С., 2007 — doc — Яндекс.Диск.

15.10.2013 10:25 UTC

учебник по физике :: физика :: Ртищева :: интеграл Клаузиуса

Следующие учебники и книги:

  • Физика, 7 класс, Шахмаев Н.М., Дик Ю.И., 2007
  • Электродинамика и распространение радиоволн, Баскаков С.И., 1992
  • Физика в вопросах и ответах, Шелест В.И., Балдин Е.М., Воробьев П.В., Гинзбург И.Ф., 1999
  • Теория относительности

Предыдущие статьи:

>

 

Источник: https://obuchalka.org/2013101574004/teoreticheskie-osnovi-gidravliki-i-teplotehniki-rtischeva-a-s-2007.html

Biz-books
Добавить комментарий