Способы преобразования проекций. Письменко Л.Д.

Способы преобразования проекций — pdf скачать бесплатно

Способы преобразования проекций. Письменко Л.Д.

В. И. Холманова Проекционные задачи Методические указания по начертательной геометрии к самостоятельной подготовке студентов немашиностроительных специальностей всех форм обучения Ульяновск 2007 Федеральное

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПОСТРОЕНИЕ РАЗВЕРТОК

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» СПОСОБЫ

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СПОСОБЫ ПРЕОБРАЗОВАНИЯ

Подробнее

0 Л.Д. Письменко РАБОЧАЯ ТЕТРАДЬ ПО ИНЖЕНЕРНОЙ ГРАФИКЕ Ульяновск 2007 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ 1 Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ

Подробнее

ЛЕКЦИЯ 5 5. СПОСОБЫ ПРЕОБРАЗОВАНИЯ КОМПЛЕКСНОГО ЧЕРТЕЖА Решение пространственных задач на комплексном чертеже значительно упрощается, если интересующие нас элементы фигуры занимают частное положение. Переход

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Г. М. Горшков

Подробнее

Б. М. Маврин, Е. И. Балаев СПОСОБЫ ПРЕОБРАЗОВАНИЯ ЧЕРТЕЖА Практикум Самара 2005 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Л. Д. Письменко,

Подробнее

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет ПЕРЕСЕЧЕНИЕ МНОГОГРАННИКОВ ПЛОСКОСТЬЮ.

Подробнее

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет ПЕРЕСЕЧЕНИЕ МНОГОГРАННИКОВ ПЛОСКОСТЬЮ.

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ Кафедра начертательной геометрии и графики И.Г. Хармац НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Пособие по подготовке к блочной аттестации и выполнению

Подробнее

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ — УЧЕБНО-НАУЧНО- ПРОИЗВОДСТВЕННЫЙ КОМПЛЕКС» ФАКУЛЬТЕТ НОВЫХ ТЕХНОЛОГИЙ

Подробнее

МИНИСТЕРСТВО ТРАНСОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО РОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ (ИНСТИТУТ)

Подробнее

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет ПЕРЕСЕЧЕНИЕ МНОГОГРАННИКОВ ПЛОСКОСТЬЮ.

Подробнее

7. СПОСОБЫ ПРЕОБРАЗОВАНИЯ КОМПЛЕКСНОГО ЧЕРТЕЖА 7.1. Метод замены плоскостей проекций 7.2. Метод вращения вокруг оси, перпендикулярной к плоскости проекций 7.1. Метод замены плоскостей проекций При решении

Подробнее

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Инженерная графика» ИНЖЕНЕРНАЯ ГРАФИКА. ИНЖЕНЕРНАЯ И КОМПЬЮТЕРНАЯ ГРАФИКА. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ.

Подробнее

2965 МЕТРИЧЕСКИЕ ЗАДАЧИ Методические указания к выполнению графической работы для студентов всех специальностей Иваново 11 Министерство образования и науки Российской Федерации Федеральное государственное

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ

Подробнее

Позиционные задачи Методические указания по дисциплине «Начертательная геометрия» Иваново 2016 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ МЕТРИЧЕСКИЕ И ПОЗИЦИОННЫЕ ЗАДАЧИ

Подробнее

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ — УЧЕБНО- НАУЧНО-ПРОИЗВОДСТВЕННЫЙ КОМПЛЕКС» ФАКУЛЬТЕТ НОВЫХ ТЕХНОЛОГИЙ

Подробнее

8. СПОСОБЫ ПРЕОБРАЗОВАНИЯ КОМПЛЕКСНОГО ЧЕРТЕЖА 8.1. Вращение вокруг оси, параллельной плоскости проекций 8.2. Вращение вокруг следа плоскости 8.3. Решение метрических задач методами преобразования чертежа

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛОГОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра начертательной геометрии и графики НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ИНЖЕНЕРГАЯ ГРАФИКА Методические указания и

Подробнее

2 УДК 514.18 Составители: С.И. Иванова, А.С. Белозеров Рецензент Кандидат технических наук, доцент В.И. Ляхов Способы преобразования чертежа: методические указания к выполнению эпюра 2 (для студентов технических

Подробнее

Министерство образования и науки Российской Федерации Саратовский государственный технический университет РЕШЕНИЕ МЕТРИЧЕСКИХ ЗАДАЧ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ Методические указания к практическим занятиям

Подробнее

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ — УЧЕБНО-НАУЧНО- ПРОИЗВОДСТВЕННЫЙ КОМПЛЕКС» ФАКУЛЬТЕТ НОВЫХ ТЕХНОЛОГИЙ

Подробнее

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ульяновский государственный технический университет»

Подробнее

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет Методические указания Ульяновск

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ ИЗДАТЕЛЬСТВО ТГТУ Министерство образования и науки Российской Федерации ГОУ ВПО «Тамбовский государственный технический университет» НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Рабочая тетрадь для

Подробнее

1 СОДЕРЖАНИЕ 1. Общие сведения 2. Примеры решения задач 3. Контрольные вопросы 4. Приложения 4.1. Задания на эпюр 4.2. Данные к заданию 4.3. Образец оформления на листе 2 1. ОБЩИЕ СВЕДЕНИЯ Основными способами

Подробнее

2869 Проецирование точек, линий и плоскостей Позиционные и метрические задачи Методические указания и задания по начертательной геометрии для студентов всех специальностей Иваново 2009 Федеральное агентство

Подробнее

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ — УЧЕБНО- НАУЧНО-ПРОИЗВОДСТВЕННЫЙ КОМПЛЕКС» ФАКУЛЬТЕТ НОВЫХ ТЕХНОЛОГИЙ

Подробнее

Министерство сельского хозяйства Российской Федерации ФГБОУ ВО «Красноярский государственный аграрный университет» Н.Г. Полюшкин РАБОЧАЯ ТЕТРАДЬ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ Электронное издание Выполнил

Подробнее

Лекция 5 СПОСОБЫ ПРЕОБРАЗОВАНИЯ ЧЕРТЕЖА Решение многих геометрических задач (как метрических, так и позиционных) упрощается, если исходные фигуры занимают частное положение относительно плоскостей проекций.

Подробнее

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ — УЧЕБНО-НАУЧНО- ПРОИЗВОДСТВЕННЫЙ КОМПЛЕКС» ФАКУЛЬТЕТ НОВЫХ ТЕХНОЛОГИЙ

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛОГОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра начертательной геометрии и графики Начертательная геометрия Плоскости Методические указания и задания для

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КУРГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра начертательной геометрии и графики НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Методические указания и контрольные задания

Подробнее

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Начертательная геометрия и черчение» ИНЖЕНЕРНАЯ ГРАФИКА. ИНЖЕНЕРНАЯ И КОМПЬЮТЕРНАЯ ГРАФИКА.

Подробнее

2193 ПОЗИЦИОННЫЕ ЗАДАЧИ Методические указания для студентов всех специальностей Иваново 2001 Министерство образования Российской Федерации Ивановская государственная текстильная академия Кафедра начертательной

Подробнее

Министерство образования и науки РФ ФГБОУ ВПО «Псковский государственный университет» Шагиева Т.А. Инженерная графика Методические указания и контрольные задания для студентов ЭлМФ заочной формы обучения

Подробнее

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ (ИНСТИТУТ)

Подробнее

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Хабаровский государственный технический университет» ПЛОЩАДКА В ОРТОГОНАЛЬНЫХ ПРОЕКЦИЯХ

Подробнее

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Омский государственный технический университет» Рабочая тетрадь для решения задач

Подробнее

Глава 1: Теоретические основы проецирования геометрических фигур на плоскость 1.1 Обозначения и символы 1. Точки заглавными буквами латинского алфавита: A, B, C, D, E, ; линии строчными буквами латинского

Подробнее

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ухтинский государственный технический университет» (УГТУ) ИНЖЕНЕРНАЯ ГРАФИКА ПРОЕКЦИИ

Подробнее

Министерство образования и науки Российской Федерации Федеральное агентство по образованию Саратовский государственный технический университет РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ Методические

Подробнее

ЛЕКЦИЯ Глава 3. ПЛОСКОСТЬ 3.. Задание плоскости на чертеже. Следы плоскости Плоскостью называется поверхность, образуемая перемещением прямой линии, которая движется параллельно самой себе по неподвижной

Подробнее

Методические указания. Рабочая тетрадь предназначена для подготовки к практическим занятиям по курсу «Начертательной геометрии», а также для проработки материала в аудитории. При подготовке к практическому

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Брянский государственный технический университет Утверждаю Ректор университета А.В.Лагерев 2008 г. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ИНЖЕНЕРНАЯ ГРАФИКА ПЕРЕСЕЧЕНИЕ МНОГОГРАННИКА

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования Оренбургский государственный университет Кафедра начертательной геометрии,

Подробнее

(МИИТ) Институт пути, строительства и сооружений Кафедра «Начертательная геометрия и черчение» Н.П. ГОРБАЧЕВА НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Рекомендовано редакционно-издательским советом университета в качестве

Подробнее

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ — УЧЕБНО- НАУЧНО-ПРОИЗВОДСТВЕННЫЙ КОМПЛЕКС» ФАКУЛЬТЕТ НОВЫХ ТЕХНОЛОГИЙ

Подробнее

Министерство образования и науки Российской Федерации НВСИБИРСКИЙ ГСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ И.В. Захарова, Д.Г. Милютина ГРАФИЧЕСКИЕ ФРМЫ И БЪЕКТЫ НА ЧЕРТЕЖЕ Утверждено Редакционно-издательским

Подробнее

ГОУ ВПО «Тульский государственный университет» Кафедра «Начертательная геометрия, инженерная и компьютерная графика» РАБОЧАЯ ТЕТРАДЬ для практических занятий и самостоятельной работы студентов по курсу

Подробнее

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВО «Кубанский государственный аграрный университет имени И. Т. Трубилина» НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ И ИНЖЕНЕРНАЯ ГРАФИКА 1:2 R 2 В А Рабочая тетрадь

Подробнее

Министерство образования Российской Федерации ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра начертательной геометрии, инженерной и компьютерной графики А.П. Иванова А.Д. Припадчев МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Подробнее

ГОУ ВПО «Тульский государственный университет» Кафедра «Начертательная геометрия, инженерная и компьютерная графика» РАБОЧАЯ ТЕТРАДЬ для практических занятий и самостоятельной работы студентов по курсу

Подробнее

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ Рабочая тетрадь по начертательной геометрии (для

Подробнее

Б. М. МАВРИН, Е. И. БАЛАЕВ ТОЧКА, ПРЯМАЯ И ПЛОСКОСТЬ НА ЧЕРТЕЖЕ Практикум Самара 2005 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Подробнее

1 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Брянский государственный технический университет Н. В. Басс, В.А. Герасимов, Эманов С.Л. ТЕСТОВЫЕ ЗАДАНИЯ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ: СПОСОБЫ ПРЕОБРАЗОВАНИЯ

Подробнее

ОГЛАВЛЕНИЕ ВВЕДЕНИЕ… 4 1. ОБЩИЕ УКАЗАНИЯ… 5 2. СОДЕРЖАНИЕ ЗАДАНИЯ… 5 3. ПОСТРОЕНИЕ ИСХОДНОГО ЧЕРТЕЖА… 5 ИСХОДНЫЕ ДАННЫЕ ДЛЯ ВЫПОЛНЕНИЯ ЭПЮРА 2… 7 4. ПОСТРОЕНИЕ ПРОЕКЦИЙ СЕЧЕНИЯ ПИРАМИДЫ ПЛОСКОСТЬЮ.

Подробнее

Министерство образования Республики Беларусь Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого» Институт повышения квалификации и переподготовки Кафедра «Разработка,

Подробнее

Федеральное агентство по образованию Тольяттинский государственный университет Кафедра «Начертательная геометрия и черчение» УЧЕБНОЕ ПОСОБИЕ по курсу «Начертательная геометрия» МОДУЛЬ 4 Тольятти 007

Подробнее

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

Подробнее

Контрольные вопросы по курсу «Начертательная геометрия» Тема: «Комплексный чертёж. Позиционные задачи» 1. Какие методы проецирования Вы знаете? 2. Сформулируйте основные свойства прямоугольного (ортогонального)

Подробнее

Б 1. Предмет начертательной геометрии (Н.Г.) Н.Г. математическая наука. Это тот раздел геометрии, который изучает теоретические основы построения плоских изображений пространственных фигур и способы графического

Подробнее

Министерство общего и специального образования РФ Московский государственный технический университет им. Н. Э. Баумана Т. Д. Момджи, Г. П. Золотова РАБОЧАЯ ТЕТРАДЬ ПО ИНЖЕНЕРНОЙ ГРАФИК Издательство МГТУ

Подробнее

1 Федеральное агентство по образованию Коломенский институт (филиал) Государственного образовательного учреждения высшего профессионального образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ»

Подробнее

Министерство общего и профессионального образования Российской Федерации СЕВЕРО-ЗАПАДНЫЙ ЗАОЧНЫЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ КАФЕДРА ИНЖЕНЕРНОЙ ГРАФИКИ НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Задания на контрольную работу

Подробнее

Министерство образования и науки Российской Федерации Вологодский государственный университет Кафедра начертательной геометрии и графики НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Методические указания и задания для самостоятельной

Подробнее

ОГЛАВЛЕНИЕ ВВЕДЕНИЕ.. 4 1. ОБЩИЙ АЛГОРИТМ РЕШЕНИЯ ЭПЮРА 2. 5 2. ПОСТРОЕНИЕ СЛЕДОВ ПЛОСКОСТИ..5 3. СОВМЕЩЕНИЕ ПЛОСКОСТИ С ПЛОСКОСТЬЮ ПРОЕКЦИЙ 13 4. ПОСТРОЕНИЕ ОСНОВАНИЯ МНОГОГРАННИК. 14 4.1. Построение

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОМЫШЛЕННЫХ

Подробнее

Федеральное агентство по образованию РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА им. И.М. ГУБКИНА А.В. Бочарова, Т.П. Коротаева ИНЖЕНЕРНАЯ ГРАФИКА Точка, прямая плоскость на комплексном чертеже

Подробнее

Министерство образования и науки Российской Федерации Южно-Российский государственный политехнический университет (НПИ) им. М.И. Платова Шахтинский институт (филиал) ЮРГПУ(НПИ) им. М.И. Платова В.В. Чухно

Подробнее

Б. М. Маврин, Е. И. Балаев ИЗОБРАЖЕНИЕ МНОГОГРАННИКОВ Практикум Самара 2005 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ

Подробнее

Занятие 1 Точка. Прямая. Положение прямой относительно плоскостей проекций. Взаимное положение прямых. Принадлежность точки прямой. 1.1 Свойства параллельного проецирования Рис. 1.1 Свойства параллельного

Подробнее

Методические указания по выполнению расчетно-графических работ по начертательной геометрии 1. В первом семестре выполняется пять расчетно-графических работ (РГР), которые сдаются по мере изучения тем курса

Подробнее

Тесты по начертательной геометрии. 1. На каком эпюре задана точка А(20,10,15)? 2. На каком эпюре изображена прямая, расположенная в профильной плоскости проекций? 3. На каком из эпюров изображена точка

Подробнее

Федеральное агентство по образованию ГОУ ВПО «Уральский государственный технический университет УПИ» Т.И. Кириллова, Л.Ю. Елькина, Н.Н. Морозова, А.Г. Зигулев ОТНОСИТЕЛЬНОЕ ПОЛОЖЕНИЕ ГЕОМЕТРИЧЕСКИХ ОБЪЕКТОВ

Подробнее

ЛЕКЦИЯ 7 7. МНОГОГРАННИКИ. ПЕРЕСЕЧЕНИЕ МНОГОГРАННИКОВ С ПЛОСКОСТЬЮ И ПРЯМОЙ. Гранные поверхности это поверхности, образованные перемещением прямолинейной образующей по ломаной линии. Часть этих поверхностей

Подробнее

Развертки поверхностей Разверткой поверхности называется плоская фигура, полученная в результате совмещения всех точек поверхности с одной плоскостью. Между поверхностью и ее разверткой устанавливается

Подробнее

Инженерная графика Кривальцевич Татьяна Владимировна Задания К лекции «Пересечение геометрических тел плоскостями. Построение разверток» Омск-2010 Требования к выполнению заданий: 1. Задание выполнить

Подробнее

ВСПОМОГАТЕЛЬНОЕ ПРОЕЦИРОВАНИЕ Издательство ТГТУ Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Тамбовский государственный

Подробнее

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ — УЧЕБНО- НАУЧНО-ПРОИЗВОДСТВЕННЫЙ КОМПЛЕКС» ФАКУЛЬТЕТ НОВЫХ ТЕХНОЛОГИЙ

Подробнее

Министерство образования Российской Федерации Восточно-Сибирский государственный технологический университет. МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ по начертательной геометрии для студентов механических

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Е. М. Кирин МЕТРИЧЕСКИЕ ЗАДАЧИ В КУРСЕ НАЧЕРТАТЕЛЬНОЙ

Подробнее

КОНСПЕКТ ЛЕКЦИЙ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ Преподаватель Студент Группа 1 ПРЕДМЕТ И МЕТОД НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ Начертательная геометрия это один из разделов геометрии, изучающий методы изображения

Подробнее

Рабочая тетрадь по инженерной графике с примерами решений Кулик О.Г. Тышкевич В.Н. Волжский 2018 0 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ) ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО

Подробнее

Автономная некоммерческая организация высшего профессионального образования «Северо-Западный открытый технический университет» Кафедра инженерной графики и механики НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ И ИНЖЕНЕРНАЯ

Подробнее

Б. М. Маврин, Е. И. Балаев ИЗОБРАЖЕНИЕ ТЕЛ ВРАЩЕНИЯ Практикум Самара 2005 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ЯРОСЛАВА МУДРОГО Сборник задач по начертательной геометрии Великий Новгород — 2012 ББК 22151.3я7 С 23

Подробнее

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЁВА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

Подробнее

Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Кафедра «Проектирование и эксплуатация автомобилей» Ж. А. Пьянкова РЕШЕНИЕ ЗАДАЧ ПО НАЧЕРТАТЕЛЬНОЙ

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Тестовые задания 4 вариант Хабаровск 2014 0 Тема 1. Точка 1. Указать правильный ответ Ось проекций 0Z — это 1 линия пересечения плоскостей П 1 и П 2 2 линия пересечения плоскостей

Подробнее

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ижевский государственный технический университет имени М.Т. Калашникова» Кафедра

Подробнее

Федеральное агентство по образованию Ухтинский государственный технический университет КОМПЛЕКТ ЗАДАНИЙ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ Методические указания Ухта 2006 УДК 514.18:55(057) Д 82 Думицкая, Н.

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Тестовые задания 7 вариант Хабаровск 2014 0 Тема 1.Точка 1. Указать правильный ответ Ось проекций 0У это 1 линия пересечения плоскостей П 1 и П 2 2 линия пересечения плоскостей

Подробнее

Источник: https://docplayer.ru/34593035-Sposoby-preobrazovaniya-proekciy.html

Способы преобразования проекций — Всё для чайников

Способы преобразования проекций. Письменко Л.Д.

Подробности Категория: Основы начертательной геометрии

На чертежах некоторые элементы изображаются в искаженном виде. В некоторых случаях требуется определить действительную величину этих элементов, например, при выполнении чертежей разверток поверхностей геометрических тел.

Изучая прямоугольное проецирование отрезков прямых или плоских кривых линий, а также фигур (треугольника, круга и др.

) на три плоскости V, H и W, можно отметить, что действительные размеры и виды этих линий и фигур получаются на той плоскости проекций, параллельно которой расположены эти линии и фигуры (рис. 117).

Например, отрезок прямой А В, параллельный плоскости V (отрезок фронтали), проецируется в действительную длину на плоскость V или, иначе, длина фронтальной проекции a'в' отрезка фронтали равна действительной длине этого отрезка.

Если плоскость фигуры, например треугольника АВС, параллельна фронтальной плоскости проекций, то фронтальная проекция а'b'с' является его действительным видом.

В техническом черчении иногда приходится по данным прямоугольным проекциям (комплексному чертежу) детали определять действительную величину или вид какого-либо элемента этой детали, расположенного в плоскости общего положения.

Для этого применяются особые способы построения, цель которых получить новую проекцию элемента детали, представляющую собой его действительную величину или вид.

Такими способами являются: способ вращения, способ совмещения (частный случай предыдущего способа) и способ перемены плоскостей проекций.

Способ вращения

Сущность способа вращения заключается в том, что заданные точка, линия или плоская фигура вращаются вокруг оси, перпендикулярной к одной из плоскостей проекций, до требуемого положения относительно какой-либо плоскости проекций. Если вращается фигура или тело, то каждая их точка будет перемещаться по окружности.

Рассмотрим вращение простейшего геометрического элемента — точки А (рис. 118, а). Пусть ось вращения MN будет перпендикулярна к плоскости . При вращении вокруг оси MN точка А перемещается по окружности, лежащей в плоскости, перпендикулярной к оси вращения. Точка пересечения этой плоскости с осью называется центром вращения.

Так как окружность, по которой движется точка А, расположена в плоскости, параллельной плоскости Н, то горизонтальная проекция этой окружности является ее действительным видом, а фронтальная проекция — отрезком прямой, параллельной оси х. Длина этого отрезка равна диаметру окружности, лежащей в плоскости вращения.

Таким образом, при вращении точки А вокруг оси, перпендикулярной к какой либо плоскости проекций, проекция точки на эту плоскость перемещается по окружности, а вторая проекция — по прямой, параллельной оси проекций.

Повернем данную точку А вокруг оси , перпендикулярной к плоскости V, на заданный угол а. Для этого на комплексном чертеже необходимо выполнить следующие построения (рис. 118, б).

Фронтальную проекцию оси вращения — точку m'n' — соединяют прямой линией с фронтальной проекцией а' точки А и получают отрезок m'a', равный действительной величине (длине) радиуса окружности вращения. Этим радиусом из центра m' описывают дугу окружности вращения (рис.

118, На плоскости V строят угол а, одна сторона которого является радиусом вращения а'm’.

На пересечении дуги окружности вращения с другой стороной угла а получаем точку а'1 — новую фронтальную проекцию точки Новую горизонтальную проекцию точки А находят, проводя вертикальную линию связи из точки а'1 до пересечения с прямой, проведенной из точки а параллельно оси  х.

Вращение отрезка прямой вокруг оси, перпендикулярной к плоскости проекций, можно рассматривать как вращение двух точек этого отрезка.

Построения на комплексном чертеже упрощаются, если ось вращения провести через какую-либо конечную точку вращаемого отрезка прямой.

В этом случае достаточно повернуть только одну точку отрезка, так как другая точка, расположенная на оси вращения, остается неподвижной.

Пусть требуется определить способом вращения действительную длину отрезка прямой общего положения (рис. 119, а).

Через конец отрезка А (рис. 119, б) проводят ось вращения MN перпендикулярно плоскости Н. Относительно этой оси вращается второй конец отрезка — точка В. Чтобы получить на комплексном чертеже действительную длину отрезка, надо повернуть его так, чтобы он был параллелен плоскости V.

После вращения горизонтальная проекция отрезка должна быть параллельна оси х, поэтому на этой плоскости проекций и начинается построение. Из точки а радиусом ab описывают дугу окружности до пересечения с прямой, проведенной из точки а параллельно оси х (рис. 119, б).

Точка пересечения b1 — новая горизонтальная проекция точки В. Фронтальную проекцию b'1 точки В находят, проводя вертикальную линию связи из точки b1 до пересечения с прямой, проведенной из точки b' параллельно оси х (в данном случае эта прямая совпадает с осью х).

Соединив точки b'1 и а', на плоскости V получают действительную длину а'b'1 отрезка AВ.

Эту задачу можно решить вращением отрезка А В относительно оси, перпендикулярной к плоскости V. Через конец отрезка А проводят оси вращения MN (рис. 119, в).

Из точки а' радиусом, равным a'b' проводят дугу окружности до пересечения с прямой, проведенной из точки а' параллельно оси х, и получают новую фронтальную проекцию b'1 точки В.

Проведя из точки b прямую, параллельную оси х, а через точку b'1 вертикальную линию связи, на их пересечении получают новую горизонтальную проекцию b1 точки В (после поворота отрезка АВ). Соединив точки b1 и a, находят действительную длину ab1 отрезка АВ.

Способом вращения можно определить действительный вид фигуры. На рис. 120, а изображена стойка поддерживающего ролика ленточного конвейера. Пусть требуется определить действительный вид ребра стойки ролика — прямоугольного треугольника АВС.

Как видно из рис. 120, плоскость треугольника горизонтально-проецирующая, поэтому действительный вид треугольника можно получить на плоскости V вращением этого треугольника около вертикальной оси до тех пор, пока плоскость треугольника не станет параллельной плоскости V.

На комплексном чертеже (рис. 120 б) ось вращения, перпендикулярная к плоскости H, проведена через вершину треугольника А. Вращаются одновременно две вершины треугольника — В и С.

После поворота новая горизонтальная проекция треугольника a1b1c1 должна быть параллельна оси х. Фронтальные проекции — точки  b'1 и c'1 — вершин В и С после поворота находят, проводя вертикальные линии связи из точек с1 и b1.

Соединив точки а', b'1и c'1, получим на плоскости V действительный вид треугольника АВС.

Способом вращения на комплексном чертеже можно найти действительный вид фигуры криволинейного контура, например, лопасти мешалки (рис. 121, б). На рис. 121, а дано наглядное изображение одной лопасти этой мешалки и части вала.

Так как лопасть расположена под углом к оси вала, на котором она установлена, а ось вала на комплексном чертеже должна быть параллельна оси х, то на фронтальной и профильной проекциях лопасть будет изображена в искаженном виде.

Действительный вид контура лопасти находят вращением лопасти вокруг оси, перпендикулярной к плоскости Н. Для этого на фронтальной проекции контура берут несколько произвольных точек— a', е', m',d',c', к', n' (рис. 122).

Проводя из этих точек вертикальные линии связи, находят их горизонтальные проекции — a, е m,d,c, к, n, которые будут располагаться на горизонтальной проекции контура лопасти, т. е. на прямой ав, наклоненной под углом а к оси x. Вертикальная ось вращения проведена через точку А.

Горизонтальную проекцию аb контура лопасти поворачивают вокруг центра вращения (точки a)  на угол а и получают новую горизонтальную проекцию ab1 лопасти.

Для определения новой фронтальной проекции какой-либо точки контура, например точки b'1 через точку b1 проводят вертикальную линию связи до пересечения с прямой, проведенной из b' параллельно оси x.

Также находят и остальные новые фронтальные проекции точек контура —   е'1, m'1,d'1,c'1, к'1, n'1 . Соединяя их плавной кривой по лекалу, получим действительный вид контура лопасти.

 СПОСОБ СОВМЕЩЕНИЯ

Сущность способа совмещения заключается в том, что плоскость, заданную следами, вращают вокруг одного из следов этой плоскости до совмещения с соответствующей плоскостью проекций, например, вокруг следа Рн до совмещения с горизонтальной плоскостью проекций (рис. 123, а). Изображения отрезка прямой или плоской фигуры, лежащей в заданной плоскости Р, получаются без искажения.

Построения на комплексном чертеже упрощаются, если через совмещаемые геометрические элементы можно провести какую-либо проецирующую плоскость, например горизонтально-проецирующую.

При любом расположении горизонтально-проецирующей плоскости Р относительно V и H ее следы после совмещения будут располагаться под прямым углом (рис. 123, а и б).

Совмещая горизонтально-проецирующую плоскость с плоскостью Н вращением около горизонтального следа Рн, видим, что совмещенный фронтальный след Рv1 находится под прямым углом к неподвижному горизонтальному следу Рн (рис. 123, б).

Если на горизонтальном следе Рн, который является осью вращения горизонталъно-проецирующей плоскости Р и, следовательно, неподвижен, взять какую-либо точку, то после совмещения плоскости с плоскостью Н положение точки не изменится.

Если же взять точку В на фронтальном следе Рv плоскости Р (рис. 123, в), то совмещенная точка В будет лежать на совмещенном следе Pv1 при этом расстояние РХb' будет равно расстоянию РХb'1.

Отрезок прямой определяется двумя точками. Поэтому, если через отрезок AB провести, например, фронтально-проецирующую плоскость Р (рис. 124, а) и совместить ее с Н,то при этом с плоскостью Н совместятся и концы этого отрезка — точки A и B т. е. весь отрезок прямой. Тогда на плоскости Н отрезок спроецируется без искажения.

Таким образом, задача определения действительной длины отрезка прямой АВ способом совмещения решается следующим путем.

Через точку а (рис. 124, а), расположенную на плоскости H, проводят перпендикулярно оси горизонтальный след Рн фронтально-проецирующей плоскости Р.Через точки а' и b' проводят след Рv. Плоскость Р совмещают с плоскостью Н, совмещенное положение следа Pv совпадает с осью х.

Из точки Рх радиусом делают засечку дугой окружности на совмещенном следе Рv1 и из точки пересечения восставляют перпендикуляр к оси х. Из точки b опускают перпендикуляр на след RH и, продолжая его до пересечения с прямой, перпендикулярной к оси х , получают совмещенное положение точки В — точку b'1.

Соединив точки a'1 и b'1 находят совмещенное положение отрезка которое и будет его действительной длиной.

Определение действительного вида треугольника АВС показано на рис. 124, б. Как и при решении задачи способом вращения, здесь рассматривается случай, когда плоскость треугольника является горизонтально проецирующей.

 Решая эту задачу способом совмещения, вначале проводят следы Рv и Рн плоскости треугольника АВС. Так как сторона АС треугольника расположена в плоскости. параллельной Н, то проекция ас совпадает со следом Рн.Затем совмещают с плоскостью Н фронтальный след плоскости Pv, который после совмещения будет располагаться под углом 90° к горизонтальному следу Рн.

Для построения совмещенного положения точки В из точки b' проводят прямую, параллельную оси до пересечения со следом Pv в точке v'; на совмещенном следе Pv1 делают засечку дугой окружности радиусом, равным Pxv' и получают точку v1 — совмещенное положение точки V. Через точку v1 проводят прямую, параллельную следу Рн. Совмещенное положение точки В находится в точке b'1 пересечения перпендикуляра, восставленного из точки b к следу Рн с прямой, проведенной из точки параллельно следу Pн .

Определение действительного вида фигуры криволинейного контура, например лопасти мешалки, способом совмещения показано на рис. 125. Построение аналогично описанному выше. Различие состоит в том, что в данном случае совмещают несколько произвольно взятых точек криволинейного контура.

Через фигуру (контур) лопасти проводят вспомогательную горизонтально-проецирующую плоскость, заданную следами Pv и Рн. Затем на криволинейном контуре берут несколько произвольно расположенных точек А, В, С, … через которые проводят горизонтали этой плоскости. Плоскость Р совмещают с плоскостью Н вместе с горизонталями.

На совмещенных горизонталях находят точки a'1, b'1,c'1, которые соединяют плавной кривой, и получают действительный вид контура лопасти.

Например, для совмещения с плоскостью Н точки В криволинейного контура через точку В проводят горизонталь плоскости Р. Фронтальная проекция горизонтали параллельна оси х; горизонтальная проекция горизонтали совпадает с горизонтальным следом Рн. Затем эту горизонталь совмещают с плоскостью Н. Совмещение произведено таким образом.

Фронтальная проекция горизонтали пересекает фронтальный след Рv плоскости Р в точке v', которая является фронтальным следом горизонтали.

Совмещенное положение этого следа находится на совмещенном фронтальном следе Рv в точке v1 Из точки v1 проведена прямая, параллельная Рv, которая и будет совмещенным положением горизонтали, проходящей через точку В.

Из горизонтальной проекции b'1 точки восставлен перпендикуляр к Рн и продолжен далее до пересечения с совмещенной горизонталью в точке b'1. Эта точка и будет являться искомым совмещенным положением точки В с плоскостью Н.

Способ перемены плоскостей проекций

Сущность способа перемены плоскостей проекций заключается в том, что одна из плоскостей проекций заменяется новой, на которую проецируются данная точка, отрезок прямой линии или фигура.

При этом в отличие от двух предыдущих способов эти геометрические элементы не меняют своего положения в пространстве. Например, фронтальная плоскость проекций V может быть заменена новой, обозначаемой (рис.

126, а), причем плоскость V1 должна быть так же, как и плоскость V, перпендикулярна к плоскости H.

На комплексном чертеже (рис. 126, б) новая ось проекций, которая образуется при пересечении новой плоскости V1 с плоскостью обозначается x1. Новая система плоскостей проекций обозначается V1/H.

Иногда заменяется и горизонтальная плоскость проекций Н на новую плоскость, обозначаемую H1.

Если новая фронтальная плоскость проекций по своему положению являлась, как и замененная V, вертикальной плоскостью, то новая горизонтальная плоскость проекций Н1 по своему положению не будет горизонтальной, а называется так только условно.

В некоторых  случаях для решения задач на комплексном чертеже приходится последовательно заменять две плоскости проекций, например, фронтальную V на V1 и горизонтальную Н на Н1 наглядном изображении проекций точки А (рис.

126, а) видно, что при перемене фронтальной плоскости проекций V на новую V1 расстояние от новой фронтальной проекции а'1 точки А до новой оси проекций х1 равно расстоянию от фронтальной проекции а' точки А до оси проекции x, т. е. координате zA. Это правило надо запомнить.

В дальнейшем оно применяется при решении разных задач способом перемены плоскостей проекций.

Таким образом, при замене плоскости V на плоскость V1 на комплексном чертеже прежде всего должна быть проведена новая ось проекций x1 (рис. 126, а), а затем построена новая фронтальная проекция точки.

Для этого из горизонтальной проекции а точки А опускают перпендикуляр на новую ось проекций х1 и на продолжении этого перпендикуляра откладывают от новой оси координату zA.

В результате получают новую фронтальную проекцию а'1 точки А.

Если на комплексном чертеже точки А нужно заменить горизонтальную плоскость проекций, то для нахождения новой горизонтальной проекции a1 точки А надо (рис. 127, а и б) из фронтальной проекции а' опустить на новую ось х1 перпендикуляр и на его продолжении отложить координату уА точки А.

Определим способом перемены плоскостей проекций действительную длину отрезка AB (рис. 128). В этом случае новая плоскость проекций V1, или Н1 должна быть выбрана так, чтобы она была параллельна отрезку АВ. Иначе отрезок AВ по отношению к новой плоскости проекций должен быть или фронталью (при замене плоскости V на плоскость V1 ), или горизонталью (при замене плоскости Н на плоскость H1).

Решим эту задачу двумя вариантами.

Первый вариант. Заменим плоскость V новой фронтальной плоскостью проекций V1 (рис. 128, а).

Для упрощения построений новая ось проекций х1 может совпадать с горизонтальной проекцией ab отрезка прямой. Координата zB точки равна нулю (так как точка В расположена на плоскости H), поэтому новая фронтальная проекция b'1 совпадает с прежней горизонтальной проекцией b.

Новая фронтальная проекция а'1 точки А находится на перпендикуляре, восставленном к новой оси проекций x1 . Отрезок а'1 а, отложенный на этом перпендикуляре, равен расстоянию от прежней фронтальной проекции а' точки А до прежней оси x или координате zА точки А. Соединив точки a'1 и b'1 получим действительную длину отрезка АВ.

Второй вариант. Заменим плоскость H новой горизонтальной плоскостью проекций Н1 (рис. 128, б).

Новую ось проекций х1 проведем (для упрощения построений) через фронтальную проекцию отрезка а'1b'1.

Координату уА откладываем на перпендикуляре к новой оси x1, от точки а', а координату УВ — от точки b'. Отложив эти координаты, получаем новые горизонтальные проекции а1 и b1 точек A и B.

Соединив точки а1 и b1, на новой горизонтальной плоскости проекций Н1, получим действительную длину отрезка АВ.

Действительный вид плоской фигуры также можно определить способом перемены плоскостей проекций.

Для примера возьмем прямоугольный треугольник AВС (см. рис. 128, в), который расположен в горизонтально-проецирующей плоскости.

В данном примере заменяется плоскость проекций V новой плоскостью V1 так, чтобы новая фронтальная проекция треугольника АВС была его искомым действительным видом.

Новая ось проекций х1 должна быть проведена на комплексном чертеже параллельно горизонтальной проекции треугольника или (для упрощения построений) так, как показано на рис 128, в, где новая ось х1 совпадает с горизонтальной проекцией abc треугольника.

В этом случае новые фронтальные проекции a'1 и с'1 совпадут с горизонтальными проекциями а и с вершин треугольника.

Для определения действительного вида треугольника остается найти только одну новую фронтальную проекцию третьей точки — вершины В.

Для этого нужно из прежней горизонтальной проекции b точки В восставить перпендикуляр к новой оси  проекций x1 и от нее отложить на перпендикуляре расстояние от фронтальной проекции b’ до оси х или координату zB .

Соединив точку b'1 с точками а'1 и с'1 прямыми линиями, получим действительный вид треугольника АВС.

Подобными приемами построений можно определить действительный вид многоугольника /2345, плоскость которого является фронтально-проецирующей (см. рис. 129).

В этом случае требуется заменить H на H1, ось проекций которой проводится параллельно фронтальной проекции многоугольника на произвольном расстоянии.

Для нахождения, например, новой горизонтальной проекции точки 3 из точки 3' восставляют перпендикуляр и от оси x1, откладываем на этом перпендикуляре расстояние, равное расстоянию от точки 3 до оси x;. Точка З1 будет новой горизонтальной проекцией точки 3. Так же находят точки 11,21,41 и 51    Затем, соединив их прямыми линиями, получают действительный вид многоугольника.

Построение действительного вида контура лопасти, расположенной в горизонтально-проецирующей плоскости, показано на рис. 130. В этом случае плоскость проекции V заменена новой плоскостью V1 . Для упрощения построений новая ось проекций x1 проведена через горизонтальную проекцию фигуры, а лопасть опущена вниз до соприкосновения с плоскостью Н.

Для определения действительного вида контура фигуры строят новые фронтальные проекции нескольких ее точек способом, описанным выше.

Например, для построения новой фронтальной проекции какой-либо точки Е криволинейного контура лопасти из горизонтальной проекции е к новой оси проекций x1 восставляют перпендикуляр, на котором от точки е откладывают отрезок, равный расстоянию фронтальной проекции е' до оси х, т. е. координату z точки Е. е'1 — новая фронтальная проекция точки Е.

Источник: https://forkettle.ru/vidioteka/tekhnicheskie-nauki/cherchenie/780-osnovy-nachertatelnoj-geometrii/8633-sposoby-preobrazovaniya-proektsij

Biz-books
Добавить комментарий