Соединения паяные и клеевые. Зинченко Ю.В

Клееные и паяные соединения

Соединения паяные и клеевые. Зинченко Ю.В

Клееные соединения.Клееным называется неразъемное соеди­нение составных частей изделия с применением клея. Действие клеев ос­новано на образовании межмолекулярных связей между клеевой пленкой и поверхностями склеенных материалов.

Клееные соединения применяют для соединения металлических, не­металлических и разнородных материалов, причем в настоящее время имеется тенденция к расширению применения этих соединений. Так, на­пример, клееные соединения применяют в таких ответственных конст­рукциях, как летательные аппараты и мосты.

Достоинства клееных конструкций заключаются в возможно­сти соединения практически всех конструкционных материалов в любых сочетаниях, любой толщины и конфигурации, причем обеспечивается герметичность и коррозионная стойкость соединений.

В отличие от свар­ных, клееные соединения почти не создают концентрации напряжений, не вызывают коробления деталей и надежно работают при вибрационных нагрузках.

По сравнению с другими клееные соединения дешевле, а клее­ные конструкции обычно легче других при прочих равных условиях.

Недостатки клееных соединений: сравнительно невысокая прочность, в особенности при неравномерном отрыве, относительно не­высокая долговечность некоторых клеев («старение»), низкая теплостой­кость, необходимость соблюдения специальных мер по технике безопас­ности (установка приточно-вытяжной вентиляции); для большинства со­единений требуется нагрев, сжатие и длительная выдержка соединяемых деталей.

Клеи делят на конструкционные (для прочностных соединений) и не­конструкционные (для ненагруженных соединений).

По природе основного компонента различают неорганические, орга­нические и элементоорганические клеи. К неорганическим клеям относят жидкие стекла, применяемые для склеивания целлюлозных материалов.

Существует большое разнообразие конструкционных клеев, отли­чающихся физико-механическими свойствами и технологией их приме­нения.

Наибольшее применение в машиностроении и приборостроении имеют органические клеи на основе синтетических полимеров, например универсальные клеи БФ, технические условия на которые стандартизова­ны, и эпоксидные клеи с наполнителем и без наполнителя.

При необходи­мости повышенной теплостойкости (до 1000° С) применяют элементоор­ганические клеи, обладающие сравнительно меньшей эластичностью. Клеи не являются проводниками, поэтому при необходимости обеспечить электропроводность в них добавляют порошкообразное серебро.

Для склеивания деталей требуется механическая и химическая под­готовка их поверхностей.

Механическую подготовку и пригонку метал­лических деталей производят на металлорежущих станках или вручную напильником, сложные поверхности подвергают пескоструйной обработ­ке; пластмассовые детали обрабатывают резанием или зачищают наждач­ной шкуркой. Химическая подготовка заключается в очищении и обезжи­ривании склеиваемых поверхностей ацетоном, спиртом, бензином или бензолом.

Клей наносят на поверхность кистью или пульверизатором. Проч­ность клееного соединения в значительной степени зависит от толщины клеевого слоя, которая в основном определяется вязкостью клея и давле­нием при склеивании.

Рекомендуются толщины клеевого слоя для раз­личных клеев в пределах 0,05—0,25 мм; при толщине клеевого шва 0,5 мм и более прочность соединения значительно снижается.

Наибольшее влия­ние на прочность клееного соединения оказывает температура эксплуата­ционного режима, которая для большинства конструкционных клеев ре­комендуется в пределах от минус 60 °С до плюс 80 °С.

В прочностных клееных конструкциях наиболее распространены стыковые и нахлесточные соединения, примеры которых приведены на рис. 2.

9: а — стыковое с накладкой; б — косостыковое; в — стыковое; г — стыковое соединение труб одинакового диаметра; д — нахлесточное; е — нахлесточное шпунтовое; ж — косостыковое соединение труб одно­го диаметра; з — нахлесточное (телескопическое) соединение труб разно­го диаметра.

Прочность клееного соединения зависит от площади склеивания. Наиболее прочными являются соединения, работающие на сдвиг или рав­номерный отрыв, когда напряжения по всей площади склеивания можно полагать распределенными равномерно.

При работе на отдирание (нерав­номерный отрыв) прочность соединения не определяется площадью склеивания, так как оно будет разрушаться последовательными участка­ми; в таких случаях применяют комбинированные соединения — клееклепаные или клеесварные.

Расчетные формулы на сдвиг и отрыв для клееных соединений име­ют вид

τ =F/ Ак < [τ] . σр=F/ Ак < [σр] ,

где F — действующая сила; Ак — площадь склеивания. Допускаемое на­пряжение на сдвиг [τ] = τв[s], а на отрыв [σр] = σв./S, где для распро­страненных клеев предел прочности при сдвиге τв

Источник: https://studopedia.ru/17_76457_kleenie-i-payanie-soedineniya.html

Паяные и клеевые соединения

Соединения паяные и клеевые. Зинченко Ю.В

⇐ Предыдущая3456789101112Следующая ⇒

Паяные соединения — это неразъемные соединения, обеспечиваемые силами моле­кулярного взаимодействия между соеди­няемыми деталями и припоем.

Припой — это сплав или металл, вводимый в расплав­ленном состоянии в зазор между соединяе­мыми деталями и имеющий более низкую температуру плавления, чем соединяемые детали.

Отличие пайки от сварки — отсут­ствие расплавления или высокотемпературного нагрева соединяемых деталей.

Связь в паяном шве основана на:

· растворении металла деталей в расплав­ленном припое;

· взаимной диффузии элементов припоя и металла соединяемых деталей;

· бездиффузионной атомной связи.

Прочность паяного шва существенно выше, чем припоя,

в связи с растворением в слое материала деталей,

в связи с тем, что слой находится в стесненном напря­женном состоянии между соединяемыми деталями.

Процесс пайки состоит из операций: прогрева соединяемых поверхностей, рас­плавления припоя, растекания припоя и заполнения шва, охлаждения и кристалли­зации.

Тип паяного соединения определяется формой и расположением деталей и на­грузкой. Пайкой соединяют однородные и разно­родные материалы: черные и цветные ме­таллы, сплавы, керамику, стекло и т. д.

Основные паяные соединения: внахлест­ку (ПН-1 …ПН-6, включая телескопиче­ские ПН-4…ПН-6), встык (ПВ-1, ПВ-2), вскос (ПВ-З, ПВ-4), втавр (ПТ-1…ПТ-4), соприкасающиеся (ПС-1,ПС-2). Преиму­щественное применение имеют соединения внахлестку, как обеспечивающие достаточ­но высокую прочность вплоть до достиже­ния равнопрочности с целыми деталями.

Стыковые соединения имеют примене­ние, ограниченное малыми нагрузками, что связано с малыми поверхностями спая.

Соединения ступенчатые и вскос (ПВ-З, ПВ-4 с углом не более 30°) способны обеспечивать необходимую прочность, но их применение ограничивается сложностью изготовления.

Пайкой соединяют листы, стержни, тру­бы между собой и с плоскими деталями и др. Важную область составляют сотовые паяные конструкции.

Припой должен быть легкоплавким, хорошо смачивать соединяемые поверх­ности, обладать достаточно высокой проч­ностью, пластичностью, непроницае­мостью. Коэффициенты линейного расши­рения материалов соединяемых деталей и припоев не должны сильно различаться.

В технике применяют широкую номенклатуру припоев, разделяемую на группы по температуре плавления и по химическому составу.

Припой изготовляют в виде стержней, проволоки, пасты и порошка, а припойных сплавов различают намного больше, чем флюсов. Выбор припоя зависит от температуры плавления соединяемых металлических деталей.

Различают легкоплавкие, или мягкие, припои с температурой плавления до 350°С и тугоплавкие, или твердые, с температурой плавления выше 600°С. Из мягких припоев наиболее распространены оловянно-свинцовые сплавы, а из твердых — медноцинковые и серебряномедные сплавы.

Из-за низкой температуры плавления не рекомендуется применять припои в соединениях, работающих при температуре выше 100°С. Мягкие припои широко применяют в приборостроении. Твердые припои применяют для соединений, несущих нагрузки.

При статических нагрузках применяют припои на медной основе, а для соединений, воспринимающих ударные ивибрационные нагрузки,— припои на серебряной основе. В машиностроении употребительны следующие мягкие припои:

L-SN SB5 и L-SN AG5, а также оловянные сплавы с 5%-ной долей сурьмы или серебра с рабочей температурой от 230 до 240°С, применяемые для пайки коммуникационных медных труб с горячей или холодной водой, для обогревательных устройств и в пищевой промышленности.

Оловянно-свинцовые по ГОСТ 21930—76* : ПОС 61, ПОС 40, ПОС 30, ПОС 10 и др. (ши­рокое применение);

Соответственно температура их плавления составляет 190, 210 и 235°С, возрастая с понижением доли олова.

В группе твердых припоев различают очень низкоплавкие припои на алюминиевой основе, среди которых отметим особенно удобный для пайки по зазору алюминиевых сплавов всех видов — это L-AL SL12. Кроме того, низкоплавкими твердыми припоями являются припои, содержащие не менее 20% серебра.

Так, например, припой L-AG 2P с относительно высоким диапазоном температуры плавления (от 650 до 810 °С) применяют для пайки меди и всевозможных медных сплавов во всех отраслях, где используют медь.

Из группы твердых припоев, содержащих не менее 20% серебра, следует особо упомянуть припой L-AG 40CD — низкоплавкий твердый припой (595-630°С), относящийся к разновидности твердых припоев, служащих для пайки по зазору стали, меди и латуни.

Припои на основе меди имеют температуру плавления около 900°С и используются при пайке стали, ковкого чугуна, меди и медных сплавов — это, например, L-Cu Zn 40, L-Cu Zn 39 Sn и так называемый нейзильбор L-Cu Ni 10 Zn 42.

Важно также знать, что медные, серебряные и мягкие припои проявляют оптимальную прочность только при ширине зазора от 0,05 до 0,1 мм, в то время как алюминиевые припои пригодны для зазоров шириной от 0,2 до 0,4 мм.

В процессе пайки для защиты поверхностей от загрязнения и окисления и соответственно для улучшения растекания жидкого припоя применяют флюсы.

Флюсы.От качества флюса во многом зависит хорошее смачивание припоем мест спайки и образование прочных швов. При температуре паяния флюс должен плавиться и растекаться равномерным слоем, в момент же пайки он должен всплывать на внешнюю поверхность припоя. Температура плавления флюса должна быть несколько ниже температуры плавления применяемого припоя.

Химически активные флюсы (кислотные)— это флюсы, имеющие в большинстве случаев в своем составе свободную соляную кислоту. Существенным недостатком кислотных флюсов является интенсивное образование коррозии паяных швов.

К химически активным флюсам прежде всего относится соляная кислота, которая употребляется для пайки стальных деталей мягкими припоями. Кислота, оставшаяся после пайки на поверхности металла, растворяет его и вызывает, появление коррозии.

После пайки изделия необходимо промыть горячей проточной водой. Применение соляной кислоты при пайке радиоаппаратуры запрещается, так как во время эксплуатации возможно нарушение электрических контактов в местах пайки.

Следует учитывать, что соляная кислота при попадании на тело вызывает ожоги.

Хлористый цинк (травленая кислота) в зависимости от условий пайки применяется в виде порошка или раствора. Используется для пайки латуни, меди и стали.

Для приготовления флюса необходимо в свинцовой или стеклянной посуде растворить одну весовую часть цинка в пяти весовых частях 50-процентной соляной кислоты. Признаком образования хлористого цинка служит прекращение выделения пузырьков водорода.

Из-за того, что в растворе всегда имеется небольшое количество свободной кислоты, в местах пайки возникает коррозия, поэтому после пайки место спая должно тщательно промываться в проточной горячей воде.

Пайку с хлористым цинком в помещении, где находится радиоаппаратура, производить нельзя. Применять хлористый цинк для пайки электро и радиоаппаратуры также нельзя. Хранить хлористый цинк необходимо в стеклянной посуде с плотно закрытой стеклянной пробкой.

Бура (водная натриевая соль пироборной кислоты) применяется как флюс при пайке латунными и серебряными припоями. Легко растворяется в воде. При нагревании превращается в стекловидную массу. Температура плавления 741°С. Соли, образующиеся при пайке бурой, необходимо удалять механической зачисткой. Порошок буры следует хранить в герметически закрытых стеклянных банках.

Нашатырь (хлористый аммоний) применяется в виде порошка для очистки рабочей поверхности паяльника перед лужением.

Химически пассивные флюсы (бескислотные).

К бескислотным флюсам относятся различные органические вещества: канифоль, жиры, масла и глицерин. Наиболее широко в электро- и радиомонтажных работах применяется канифоль (в сухом виде или раствор ее в спирте).

Самое ценное свойство канифоли, как флюса, заключается в том, что ее остатки после пайки не вызывают коррозии металлов. Канифоль не обладает ни восстанавливающими, ни растворяющими свойствами. Она служит исключительно для предохранения места пайки от окисления.

Для приготовления спиртово-канифольного флюса берется одна весовая часть толченой канифоли, которая растворяется в шести весовых частях спирта. После полного растворения канифоли флюс считается готовым.

При применении канифоли места пайки должны быть тщательно очищены от окислов. Часто для пайки с канифолью детали следует предварительно облуживать.

Стеарин не вызывает коррозии. Используется для пайки с особо мягкими припоями свинцовых оболочек кабелей, муфт и др. Температура плавления около 50°С.

В последнее время широкое применение получила группа флюсов ЛТИ, применяемых для пайки металлов мягкими припоями.

По своим антикоррозийным свойствам флюсы ЛТИ не уступают бескислотным, но в то же время с ними можно паять металлы, которые раньше не поддавались пайке, например детали с гальваническими покрытиями.

Флюсы ЛТИ могут применяться также для пайки железа и его сплавов (включая нержавеющую сталь), меди и ее сплавов и металлов с высоким удельным сопротивлением (см. табл. 6.1).

Таблица 6.1

Наименование В весовых пропорциях
ЛТИ-1 ЛТИ-115 ЛТИ-120
Спирт-сырец или ректификат 67-73 63-74 63-74
Канифоль 20-25 20-25 20-25
Солянокислый анилин 3-7
Метафенилендиамин 3-5
Диэтиламин солянокислый 3-5
Триэтаноламин 1-2 1-2 1-2

При пайке с флюсом ЛТИ достаточно произвести очистку мест пайки только от масел, ржавчины и других загрязнений. При пайке оцинкованных деталей удалять цинк с места пайки не следует. Перед пайкой деталей с окалиной последняя должна быть удалена травлением в кислотах. Предварительное травление латуни не требуется.

Флюс наносится на место спая с помощью кисточки, что можно сделать заблаговременно. Хранить флюс следует в стеклянной или керамической посуде. При пайке деталей сложного профиля можно применять паяльную пасту с добавлением флюса ЛТИ-120. Она состоит из 70—80 г вазелина, 20—25 г канифоли и 50—70 млг флюса ЛТИ-120.

Но флюсы ЛТИ-1 и ЛТИ-115 имеют один большой недостаток: после пайки остаются темные пятна, а также при работе с ними необходима интенсивная вентиляция. Флюс ЛТИ-120 не оставляет темных пятен после пайки и не требует интенсивной вентиляции, поэтому применение его значительно шире.

Обычно остатки флюса после пайки можно не удалять. Но если изделие будет эксплуатироваться в тяжелых коррозийных условиях, то после пайки остатки флюса удаляются при помощи концов, смоченных спиртом или ацетоном.

Изготовление флюса технологически несложно: в чистую деревянную или стеклянную посуду заливается спирт, насыпается измельченная канифоль до получения однородного раствора, затем вводится триэтаноламин, а затем активные добавки. После загрузки всех компонентов смесь перемешивается в течение 20—25 минут.

Изготовленный флюс необходимо проверить на нейтральную реакцию с лакмусом или метилоранжем. Срок хранения флюса не более 6 месяцев.

При низкотемпературной пайке применяют в виде флюса канифоль и ее растворы, вазелин а также более активные флюсы, содержащие органические кислоты (олеиновую, молочную лимонную) и др.

При высокотемпературной пайке серебряными, медными и жаростойкими электродами применяют прокаленную буру Na2B4O7 и ее смесь с борной кислотой. Для повышения активности флюса добавляют фтористые и хлористые соли металлов.

Клеевые соединения — это соединения неметаллическим веществом посредством поверхностного схватывания (адгезии) и внутренней межмолекулярной связи (когезни) в клеящем слое. Эти соединения в последние годы получили широкое при­менение.

Технология создания клеевых соединений состоит из подготовки склеиваемых поверхностей деталей путем очистки их от пыли, обез­жиривания и образования ше­роховатости зачисткой наж­дачной шкуркой или обработ­кой пескоструйным аппара­том; нанесения клея на эти поверхности и сборки деталей соединения; выдержки соеди­нения при требуемых давлении и температуре

Рис. 23.

Наиболее распространенные виды клеевых соединений (рис. 23) — нахлесточные (а), стыковые по косому срезу (в ус) (б) и с наклад­ками (б).

Достоинства клеевых соединений: возможность соединения де­талей из разнородных материалов, в том числе из тонколистовых, и не поддающихся сварке и пайке; герметичность, обеспечиваемая непрерывной клеевой пленкой; высокая коррозионная стойкость; хорошее сопротивление усталости.

Недостатки клеевых соединений: низкая прочность при неравномерном отрыве (отдире); ограниченная теплостойкость (лучшие клеи сохраняют достаточную прочность при температуре до 250°С); зависимость прочности соединения от сочета­ния материалов склеиваемых деталей, температуры склеивания и условий работы соединения; требование точной пригонки поверхно­стей склеиваемых деталей.

Прочность клеевого соединения зависит от марки клея, материалов соединяемых деталей, качества подготовки склеиваемых поверхностей деталей, режима склеивания и толщины клеевого шва. Толщина шва, зависящая от вязкости клея и давления при склеивании соединяемых деталей, рекомендуется в пределах 0,05. . .0,15 мм.

Применяемые в машиностроении клеи подразделяют на:

термореактивные — эпо­ксидные, полиэфирные, фенолоформальдегидные, полиуретановые;

термоплас­тичные на основе полиэтилена, поливинилхлорида; эластомеры на основе каучуков.

Источник: https://lektsii.org/8-88906.html

Biz-books
Добавить комментарий