Построение вероятностных моделей.

Построение сложных вероятностных моделей — лекции на ПостНауке

Построение вероятностных моделей.

ВИДЕО В XIV веке британский монах Уильям Оккам выдвинул принцип, который стал дальнейшей методологической основой современного научного метода, так называемый принцип Оккама.

В переводе с латинского буквально звучит так: «Не следует умножать сущности сверх необходимого», а если перевести это на менее высокопарный, более бытовой, понятный язык — «среди всех гипотез, объясняющих данное явление, следует искать наиболее простую».

Несмотря на кажущуюся тривиальность, принцип оказал значительное влияние на формирование современного научного метода. А на самом деле в быту мы применяем его достаточно часто.

Например, студент, прогулявший лекцию, в учебной части обычно объясняет, что он забыл завести будильник или проспал, а не то, что его похитили террористы, из-за чего он не попал в университет.

Формально оба объяснения годятся, они объясняют отсутствие студента на лекции, но с точки зрения здравого смысла, с бытовой точки зрения представляется достаточно очевидным, что поверят скорее в непрозвеневший будильник, нежели в террористов.

Во всяком случае, до тех пор, пока студент не предъявит каких-то дополнительных доказательств в пользу альтернативной гипотезы.

Кстати, именно поэтому современную уфологию вряд ли можно считать наукой, ибо уфологи склонны видеть марсиан и летающие тарелки даже в явлениях, которые могут быть объяснены метеорологическими зондами или атмосферными явлениями.

Оказалось, что с развитием компьютеров и появлением новой дисциплины — машинного обучения — принцип Оккама стал крайне востребованным и там. Машинное обучение как научная дисциплина посвящена поиску закономерности в данных. Под данными мы понимаем совокупность объектов. Единственное требование, которое к объекту предъявляется, что он должен быть описан вектором переменных. При этом переменные могут принадлежать к одной из двух групп — наблюдаемой или скрытой. Наблюдаемую переменную мы можем измерить для любого объекта. Скрытая переменная известна только для ограниченного подмножества объектов, и, как правило, это связано с тем, что измерение скрытых переменных сопряжено с финансовыми, вычислительными либо трудовыми затратами.

Задачи в машинном обучении

Целью машинного обучения как раз и является выработка алгоритма прогнозирования, который позволил бы для произвольного объекта по его наблюдаемым переменным что-то сказать о скрытных переменных.

В качестве исходного материала для анализа у нас есть так называемая обучающая выборка, то есть совокупность объектов, для которых и наблюдаемая, и скрытая компоненты известны.

И, на первый взгляд, представляется крайне разумной следующая стратегия: давайте мы среди всего множества возможных алгоритмов прогнозирования выберем тот, который лучше всего работает на обучающей выборке, то есть для обучающих объектов, для которых нам известно значение скрытой переменной.

Ее лучше всего предсказывать с наименьшей ошибкой, в идеале с нулевой. Идея на первый взгляд кажется разумной, и так, собственно, и стали поступать на заре машинного обучения и быстро столкнулись с явлением, получившим название «переобучение», или overfitting по-английски.

В предельном случае оно выглядит следующим образом: наш алгоритм прогнозирования просто запоминает объекты обучающей выборки, и, когда на вход ему поступает некоторый произвольный объект — то есть значение наблюдаемых компонентов этого объекта — и требуется спрогнозировать его скрытые переменные, компьютер просто проверяет, встречал ли он объект с такими же наблюдаемыми компонентами в обучающей выборке. Если встречал, то выдает тот ответ, который был в обучающей выборке. Если не встречал — выдает случайный ответ, константу или отказывается от прогнозирования. Все три случая, очевидно, имеют нулевую практическую полезность, но формально алгоритм удовлетворяет своим требованиям — он имеет нулевую ошибку на обучающей выборке. Это явление называется переобучением.

Когда стали разбираться, в чем же дело, то, немного поразмыслив, ученые пришли к выводу, что основная проблема заключается как раз в том, что компьютер не понимает разницы между простыми и сложными закономерностями, которые могут содержаться в данных, то есть компьютер не следует принципу Оккама.

Вообще представляется достаточно разумным и возможным ввести для разных алгоритмов прогнозирования, для разных закономерностей, которые найдены в данных, меру их сложности. И формально мы можем закономерности по сложности проранжировать, и тогда у нас появляется возможность выбрать более простую закономерность.

Однако возникает следующая проблема: представляется достаточно разумным, что чем сложнее закономерность, чем сложнее наш алгоритм прогнозирования, тем лучше он описывает обучающую выборку, тем меньше ошибка на объектах из обучающей выборки, и, наоборот, более простые закономерности приводят к тому, что все-таки небольшие ошибки алгоритм прогнозирования на обучающей выборке допускает.

Латентная семантическая модель

Соответственно, у нас возникают две противоположные тенденции: с одной стороны, у нас есть обучающая выборка, которую мы хотели бы при прочих равных как можно точнее прогнозировать, а с другой стороны, у нас есть сложность найденных закономерностей, сложность алгоритма прогнозирования, и мы бы хотели, чтобы эта сложность была поменьше.

Эти требования противоречат друг другу, поэтому необходимо каким-то образом искать компромисс, но для того, чтобы его найти, нам необходимо выразить и сложность, и точность в некоторых единых терминах. И тут возникает проблема, потому что ошибка на обучение измеряется в одних единицах, а сложность измеряется совершенно в других единицах.

Как это объединить? Это как килограммы с километрами складывать.

И вот здесь как раз на помощь приходит известный результат преподобного Томаса Байеса, полученный в XVIII веке, — знаменитая теорема Байеса, которая как раз и позволила выразить как меру точности, с которой мы описываем наблюдаемые данные, так и наши априорные представления о том, какие закономерности являются более простыми, какие более сложными, на языке теории вероятности, в вероятностных терминах.

В принципе выражение, получившее название формулы Байеса, достаточно элегантное, не зря его многие американские студенты математических факультетов выводят себе на футболках. Но для того, чтобы чуть глубже его понять, давайте рассмотрим, а что же такое вообще вероятность.

Казалось бы, мы говорили только что о сложности, о точности, о понятиях, которые неслучайны. А вероятность ассоциируется с чем-то, что связано со случайностью.

Но вот оказывается, что, вопреки традиционной интерпретации случайности как некой сущности, которая принципиально является неопределенной, с точки зрения байесовского подхода случайность характеризует всего лишь меру нашего незнания. Я попробую пояснить это на маленьком примере.

Классическое случайное событие — подбрасывание монетки. Мы принципиально не можем спрогнозировать исход подбрасывания монетки? Вообще-то классическая физика утверждает, что можем.

Если бы мы знали все начальные характеристики, с которыми подбрасываем монету: импульс, скорость, силу подбрасывания монеты, сопротивление воздуха, влажность, коэффициент трения поверхности и так далее, — то мы могли бы абсолютно точно указать, упадет монета орлом или решкой.

То, что для нас это событие выглядит случайным, всего лишь означает, что мы не знаем части переменных, характеризующих некоторые детерминированные процессы.

И если задуматься, то оказывается, что почти все, что мы привыкли называть случайным, на самом деле является просто некоторыми неслучайными процессами, в которых просто часть информации нам неизвестна, поэтому мы не можем абсолютно точно указать исход этого процесса, он для нас представляется случайным.

С этой точки зрения разница между случайными и неслучайными событиями исчезает, и поэтому язык теории вероятности применим даже к понятиям типа сложности, точности на обучающей выборке, которая как бы к случайности отношения не имеет.

Тут нам на помощь приходит результат теории информации середины XX века, знаменитая теория Клода Шеннона, который показал, что сложность в каком-то смысле можно интерпретировать как низкую вероятность.

Иными словами, гипотеза, объяснение человеку представляется сложным, если оно неожиданно, расходится с тем объяснением, которое человек ожидал бы увидеть. Например, если мы подбрасываем монетку, видим орла или решку, то это нас не удивляет, а вот если монета упала на ребро, это нам кажется удивительным.

Поэтому будет казаться, что объяснение любого явления, которое мы будем объяснять, что вот это случилось из-за того, что монета упала ребром, сложное. И в самом деле, вероятность того, что монета упадет ребром, достаточно низкая.

Это примерно то, как понятие сложности может быть переформулировано на языке теории вероятности. На этом же языке может быть переформулировано понятие точности на обучающей выборке с помощью так называемой функции правдоподобия.

И в рамках знаменитой формулы Байеса мы можем найти ту самую золотую середину, соотношение между сложностью найденных закономерностей и их точностью, качеством, с которыми эти закономерности описывают обучающую выборку. Оказалось, что подход достаточно плодотворный.

С его помощью в значительной степени проблема переобучения в машинном обучении была снята. Но подход на самом деле гораздо более плодотворен.

Формула Байеса в качестве своего ответа выдает распределение вероятностей того или иного объяснения, той или иной закономерности, которая может потенциально объяснять обучающую выборку.

Это распределение называется апостериорным распределением, и апостериорное распределение, в свою очередь, уже может быть подано на вход следующей вероятностной модели в качестве нашего нового априорного распределения, таким образом позволяя строить иерархически сложные вероятностные модели, используя более простые, стандартные, хорошо изученные вероятностные модели в качестве таких кирпичиков, из которых можно построить что-то более сложное.

Это на сегодняшний день является основным фронтом работ в области машинного обучения. И подобные все более и более сложные вероятностные модели уже находят применение и будут в ближайшие годы находить все больше применений в таких областях, как индивидуализированный веб-поиск, таргетированная реклама и рекомендательный сервис.

Источник: https://postnauka.ru/video/55303

Вероятностные модели: примеры и картинки

Построение вероятностных моделей.
Сегодня – вторая серия цикла, начатого в прошлый раз; тогда мы поговорили о направленных графических вероятностных моделях, нарисовали главные картинки этой науки и обсудили, каким зависимостям и независимостям они соответствуют.

Сегодня – ряд иллюстраций к материалу прошлого раза; мы обсудим несколько важных и интересных моделей, нарисуем соответствующие им картинки и увидим, каким факторизациям совместного распределения всех переменных они соответствуют.

Начну с того, что кратко повторю прошлый текст: мы уже говорили о наивном байесовском классификаторе в этом блоге.

В наивном байесе делается дополнительное предположение об условной независимости атрибутов (слов) при условии темы:

В результате сложное апостериорное распределение удалось переписать как
И вот какая картинка этой модели соответствует:

Всё в точности как мы говорили в прошлый раз: отдельные слова в документе связаны с переменной категории расходящейся связью; это показывает, что они условно независимы при условии данной категории. Обучение наивного байеса заключается в том, чтобы обучить параметры отдельных факторов: априорного распределения на категориях p(C) и условных распределений отдельных параметров .

Ещё одно замечание о картинках, прежде чем двигаться дальше. Очень часто в моделях встречается большое число однотипных переменных, которые связаны с другими переменными одними и теми же распределениями (возможно, с разными параметрами). Чтобы картинку легче было читать и понимать, чтобы в ней не было бесчисленных многоточий и вещей типа «ну а тут полный двудольный граф с многоточиями, ну, вы понимаете», удобно объединять однотипные переменные в так называемые «плашки» (plates). Для этого рисуют прямоугольник, в который помещают одного типичного представителя размножаемой переменной; где-нибудь в углу прямоугольника удобно ещё подписать, сколько копий подразумевается: А общая модель всех документов (без плашек мы её не рисовали) будет состоять из нескольких копий этого графа и, соответственно, выглядеть так:

Здесь я явным образом нарисовал параметры распределения на категориях α и параметры – вероятности слов в каждой категории β. Поскольку у этих параметров нет отдельного фактора в разложении, им не соответствует узел сети, но часто удобно их тоже изобразить для наглядности.

В данном случае картинка означает, что разные копии переменной C были порождены из одного и того же распределения p(C), а разные копии слов порождались из одного и того же распределения, параметризованного ещё и значением категорий (т.е.

β – это матрица вероятностей разных слов в разных категориях).

Продолжим ещё одной моделью, которую вы, возможно, смутно припоминаете из курсов матстатистики – линейной регрессией. Суть модели проста: мы предполагаем, что переменная y, которую мы хотим предсказать, получается из вектора признаков x как некоторая линейная функция с весами w (жирный шрифт будет обозначать векторы – это и общепринято, и в html мне это будет удобнее, чем каждый раз рисовать стрелочку) и нормально распределённым шумом:

В модели предполагается, что нам доступен некоторый набор данных, датасет D. Он состоит из отдельных реализаций этой самой регрессии, и (важно!) предполагается, что эти реализации были порождены независимо. Кроме того, в линейной регрессии часто вводят априорное распределение на параметры – например, нормальное распределение
Тогда мы приходим к вот такой картинке:

Здесь я явным образом нарисовал параметры априорного распределения μ0 и Σ0. Обратите внимание – линейная регрессия очень похожа по структуре на наивный байес.

С плашками то же самое будет выглядеть ещё проще:

Какие основные задачи, которые решаются в линейной регрессии? Первая задача – найти апостериорное распределение на w, т.е. научиться пересчитывать распределение w при имеющихся данных (x,y) из D; математически мы должны посчитать параметры распределения

В графических моделях обычно заштриховывают переменные, значения которых известны; таким образом, задача состоит в том, чтобы по вот такому графу со свидетельствами пересчитать распределение w:

Вторая основная задача (в чём-то даже более основная) – посчитать предсказательное распределение, оценить новое значение y в какой-то новой точке. Математически эта задача выглядит существенно сложнее, чем предыдущая – теперь надо интегрировать по апостериорному распределению

А графически как раз меняется не так много – мы рисуем новую переменную, которую хотим предсказывать, а задача по-прежнему та же: с некоторыми свидетельствами (из датасета) пересчитать распределение некоторой другой переменной в модели, только теперь это не w, а y*:

Ещё один широко известный и популярный класс вероятностных моделей – скрытые марковские модели (hidden Markov models, HMM). Они применяются в распознавании речи, для нечёткого поиска подстрок и в других тому подобных приложениях. Скрытая марковская модель – это марковская цепь (последовательность случайных величин, где каждая величина xt+1 зависит только от предыдущей xt и при условии xt условно независима с предыдущими xt-k), в которой мы не можем наблюдать скрытые состояния, а видим только некоторые наблюдаемые yt, которые зависят от текущего состояния. Например, в распознавании речи скрытые состояния – это фонемы, которые вы хотите сказать (это некоторое упрощение, на самом деле каждая фонема – это целая модель, но для иллюстрации сойдёт), а наблюдаемые – это собственно звуковые волны, которые доходят до распознающего устройства. Картинка получается вот какая:

Этой картинки достаточно, чтобы решать задачу применения уже готовой скрытой марковской модели: по имеющейся модели (состоящей из вероятностей перехода между скрытыми состояниями A, начального распределения цепи π и параметров распределений наблюдаемых B) и данной последовательности наблюдаемых найти наиболее вероятную последовательность скрытых состояний; т.е., например, в уже готовой системе распознавания речи распознать новый звуковой файл. А если нужно обучить параметры модели, лучше явно нарисовать их и на картинке, чтобы было понятно, что одни и те же параметры участвуют во всех переходах:

Ещё одна модель, о которой мы уже говорили – LDA (latent Dirichlet allocation, латентное размещение Дирихле). Это модель для тематического моделирования, в которой каждый документ представляется не одной темой, как в наивном байесе, а дискретным распределением на возможных темах. В том же тексте мы уже приводили описание генеративной модели LDA – как породить документ в готовой модели LDA:

  • выбрать длину документа N (этого на графе не нарисовано – это не то чтобы часть модели);
  • выбрать вектор — вектор «степени выраженности» каждой темы в этом документе;
  • для каждого из N слов w:
    • выбрать тему по распределению ;
    • выбрать слово с вероятностями, заданными в β.

Теперь мы понимаем, как будет выглядеть соответствующая картинка (она тоже была в том блогпосте, и я опять скопирую её из википедии, но суть картинки здесь точно такая же, как у нас выше):

В целой серии постов (1, 2, 3, 4) мы говорили об одном из главных инструментов коллаборативной фильтрации – сингулярном разложении матриц, SVD. Мы искали SVD-разложение методом градиентного спуска: конструировали функцию ошибки, считали от неё градиент, спускались по нему. Однако можно сформулировать и общую вероятностную постановку задачи, которая обычно называется PMF (probabilistic matrix factorization). Для этого нужно ввести априорные распределения на векторы признаков пользователей и продуктов:
(где I – единичная матрица), а затем, как в обычном SVD, представить рейтинги как зашумленные линейные комбинации признаков пользователей и продуктов:

где произведение берётся по рейтингам, присутствующим в обучающей выборке. Получается вот такая картинка (картинка взята из статьи [Salakhutdinov, Mnih, 2009]):

Можно добавить ещё один уровень байесовского вывода и обучать заодно и гиперпараметры распределений признаков для пользователей и продуктов; я сейчас не буду в это углубляться, а просто приведу соответствующую картинку (из той же статьи) – возможно, ещё доведётся поговорить об этом подробнее.

Ещё один пример, который лично мне близок – когда-то мы с Александром Сироткиным улучшили одну из байесовских рейтинг-систем; возможно, позднее в блоге мы поговорим о рейтинг-системах подробнее. Но здесь я просто приведу простейший пример – как работает рейтинг Эло для шахматистов? Если не вдаваться в аппроксимации и магические константы, суть очень простая: что такое вообще рейтинг? Мы хотели бы, чтобы рейтинг был мерилом силы игры; однако при этом совершенно очевидно, что сила игры от партии к партии может достаточно сильно меняться под воздействием внешних и внутренних случайных факторов. Таким образом, на самом деле сила игры того или иного участника в конкретной партии (сравнение этих сил и определяет исход партии) – это случайная величина, «истинная сила» игры шахматиста – её математическое ожидание, а рейтинг – это наша неточная оценка этого математического ожидания. Мы пока будем рассматривать простейший случай, в котором сила игры участника в конкретной партии нормально распределена вокруг его истинной силы с некоторой постоянной заранее фиксированной дисперсией (рейтинг Эло именно так и делает – отсюда и его магическая константа «шахматист с силой на 200 пунктов рейтинга больше набирает в среднем 0.75 очка за партию»). Перед каждой партией мы имеем некоторые априорные оценки силы игры каждого шахматиста; предположим, что априорное распределение тоже нормальное, с параметрами μ1, σ1 и μ2, σ2 соответственно. Наша задача – зная результат партии, пересчитать эти параметры. Картинка получается вот какая:

Здесь si (skill) – «истинная сила игры» шахматиста, pi (performance) – его сила игры, показанная в данной конкретной партии, а r – довольно интересно устроенная случайная переменная, показывающая результат партии, который получается из сравнения p1 и p2. Подробнее об этом сегодня не будем.

И закончу ещё одним близким мне примером – моделями поведения интернет-пользователей в поисковых системах. Опять же, подробно вдаваться не буду – может быть, ещё вернёмся к этому, а пока можно почитать, например, нашу с Александром Фишковым обзорную статью – просто рассмотрю одну такую модель для примера. Мы пытаемся смоделировать, что делает пользователь, когда получает поисковую выдачу. Просмотр ссылки и клик трактуются как случайные события; для конкретной запросной сессии переменная Ei обозначает просмотр описания ссылки на документ, показанный на позиции i, Ci – клик на этой позиции. Введём упрощающее предположение: предположим, что процесс просмотра описаний всегда начинается с первой позиции и строго линеен. Позиция просматривается, только если все предыдущие позиции были просмотрены. В итоге наш виртуальный пользователь читает ссылки сверху вниз, если ему понравился (что зависит от релевантности ссылки), кликает, и, если документ действительно оказывается релевантным, пользователь уходит и больше не возвращается; любопытно, но факт: для поисковой системы хорошее событие – это когда пользователь как можно быстрее ушёл и не вернулся, а если он возвращается к выдаче, значит, не смог найти то, что искал. В результате получается так называемая каскадная клик-модель (cascading click model, CCM); в ней пользователь следует вот такой блок-схеме: А в виде байесовской сети это можно нарисовать вот так:
Здесь последующие события Ei (это событие «пользователь прочитал следующий сниппет», от слова examine) зависят от того, был ли клик на предыдущей ссылке, и если был, то оказалась ли ссылка действительно релевантной. Задача же снова описывается так же, как выше: мы наблюдаем часть переменных (клики пользователя), и должны на основании кликов обучить модель и сделать выводы о релевантности каждой ссылки (для того чтобы в дальнейшем переупорядочивать ссылки согласно их истинной релевантности), т.е. о значениях некоторых других переменных в модели.
В этой статье мы рассмотрели несколько примеров вероятностных моделей, логика которых легко «считывается» из их направленных графических моделей. Кроме того, мы убедились: то, чего мы обычно хотим от вероятностной модели, можно представить в виде одной достаточно хорошо определённой задачи – в направленной графической модели пересчитать распределение одних переменных при известных значениях некоторых других переменных. Однако логика логикой, а как, собственно, обучать? Как решать эту задачу? Об этом – в следующих сериях.

Источник: https://habr.com/post/177889/

Построение вероятностной математической модели случайного явления

Построение вероятностных моделей.

Лекция № 1

Предмет теории вероятностей

Теория вероятностей — это математическая наука, изучающая закономерности в массовых случайных явлениях.

Случайное явление —это такое явление, которое при неоднократном воспроизведении одного и того же опыта (испытания, эксперимента) протекает каждый раз несколько по-иному.

Примеры случайных явлений:

1. Одно и то же тело несколько раз взвешивается на весах, самых точных (аналитических). Результаты повторных испытаний — взвешиваний — несколько отличаются друг от друга. Это происходит за счет влияния многих факторов, как-то: положение тела и разновесок на чашках весов, вибрация аппаратуры, смещение головы и глаза наблюдателя и т.п.

2. Производится испытание изделия, например, реле на длительность безотказной работы. Результат испытания изменяется, не остается постоянным. Это обусловлено многими факторами, например, микродефекты в металле, разные температурные условия и т.д.

Закономерности случайных явлений могут проявляться только при их многократном наблюдении. Изучению поддаются только такие случайные явления, которые можно наблюдать много, практически неограниченное число раз. Такие случайные явления называются массовыми.

Результаты отдельных наблюдений случайных явлений непредсказуемы, но при многократных наблюдениях выявляются определенные закономерности. Эти закономерности и являются предметом изучения теории вероятностей(ТВ).

Возникновение теории вероятностей как науки относится к середине 17 века и связано с именами Паскаля (1623-1662), Ферма (1601-1665), Гюйгенса (1629-1695). Истинная история теории вероятностей начинается с работ Бернулли (1654-1705) и Муавра (1667-1754).

В 19 веке большой вклад в развитие теории и практики внесли Лаплас (1749-1827), Пуассон (1781-1840) и Гаусс (1777-1855). Следующий период в развитии теории вероятностей связан с именами Чебышева П.Л. (1821-1894), Маркова А.А. (1856-1922), Ляпунова А.М. (1857-1918).

Современный период развития связан с именами Колмогорова (1903-1987), Бернштейна (1880-1968), Мизеса (1883-1953) и Бореля (1871-1956). Теория вероятностей является мощным инструментом исследования. Находит большое число самых разнообразных применений в различных областях науки и инженерной практики.

Построение вероятностной математической модели случайного явления

Общим для всех случайных явлений является их непредсказуемость в отдельных наблюдениях. Для их описания и исследования необходимо построить математическую вероятностную модель. Для построения модели введем некоторые определения.

Опыт (эксперимент, испытание)— наблюдение какого-либо явления при выполнении определенных фиксированных условий.

Событие— факт, регистрируемый в результате опыта.

Случайное событие— такое событие, которое при проведении данного опыта может произойти, а может и не произойти. События обозначаются: A, B, C, D…

Пространство элементарных событий: для данного опыта всегда можно выделить совокупность случайных событий, называемых элементарными. В результате опыта обязательно происходит одно и только одно из элементарных событий.

Пример: Подбрасывается игральная кость. Может выпасть одна из граней с числом очков «1», «2», «3», «4», «5» или «6». Выпадение грани — элементарное событие. Элементарные события называют такжеисходами опыта.Совокупность всех возможных в данном опыте элементарных событий (исходов) называется пространством элементарных событий.

Обозначение: W={wi}, где W — пространство элементарных событий wi.

Таким образом, любому опыту можно поставить в соответствие пространство элементарных событий.

Если производится наблюдение за неслучайным (детерминированным) явлением, то при фиксированных условиях всегда возможен лишь один исход. (W состоит из одного элементарного события).

Если наблюдается случайное явление, то W состоит более чем одного элементарного события. W может содержать конечное, счетное или несчетное множество элементарных событий.

Примеры W:

· Подбрасывается игральная кость. Элементарное событие — выпадение какой-либо грани. W={1,2,3,4,5,6} — конечное множество.

· Измеряется число космических частиц, падающих на площадку за определенное время. Элементарное событие — число частиц. W={1,2,3…} — счетное множество.

· Производится стрельба по мишени без осечки бесконечно долго. Элементарное событие — попадание в некоторую точку пространства, координаты которой (x,y). W={(x,y)} — несчетное множество.

Выделение пространства элементарных событий представляет собой первый шаг в формировании вероятностной модели случайного явления.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/4_105393_postroenie-veroyatnostnoy-matematicheskoy-modeli-sluchaynogo-yavleniya.html

Biz-books
Добавить комментарий