Найти зависимость ускорения свободного падения от высоты

Измерение ускорения свободного падения на различных высотах при помощи математического маятника

Найти зависимость ускорения свободного падения от высоты

  • Участник: Мингалеев Артур Эдуардович
  • Руководитель: Баскова Мария Аркадьевна

Цель настоящего исследования состояла в получении значения ускорения свободного падения при помощи математического маятника в условиях разного уровня высоты на уровнем моря.

Первым человеком, изучавшим природу падения тел, был греческий ученый Аристотель. Затем Галилео Галилей обобщил и не проанализировал опыт и эксперименты нескольких поколений исследователей. Он предположил, что в среде, свободной от воздуха, все тела будут падать с одинаковой скоростью.

Также Галилей предположил, что во время падения скорость тел постоянно увеличивается. Экспериментировать со свободным падением тел продолжил Исаак Ньютон. В его выводах прослеживается мысль, что на Луне и на других планетах сила тяжести, воздействующая на одно и то же тело, будет неодинакова, зависит она напрямую от массы космического тела.

Например, ускорение g на Луне в несколько раз меньше, чем на Земле. Таким образом, зная массу планеты, можно вычислить ускорение свободного падения тела на этой планете.

Цель настоящего исследования состояла в получении значения ускорения свободного падения при помощи математического маятника в условиях разного уровня высоты на уровнем моря. Для достижения поставленной цели были сформулированы следующие задачи исследования:

  1. Ознакомиться с историей открытия свободного падения тел;
  2. Изучить методы измерения ускорения свободного падения на поверхности Земли;
  3. Провести самостоятельные измерения ускорения свободного падения при помощи математического маятника;
  4. Провести измерения на различных высотах.

Гипотеза исследования: логично предположить, что ускорение свободного падения, полученные в разных экспериментах, должны быть близки к значению 9,8 м/с2 и отличаться на сотые или тысячные доли на глубине станции метро Кремлевская (–34 м) и на высоте небоскреба «Лазурные небеса» (+120 м). Также результаты измерений и вычислений могут отличаться погрешностью измерений.

Методы изучения: самостоятельная, индивидуальная работа в сочетании с теоретическими исследовательскими, проектными формами работы.

Читая много различной в том числе и технической литературы, я узнал о практическом применении различия ускорения свободного падения в разных точках на поверхности Земли.

Я измерял g различными способами, рассчитывал погрешности измерений, опираясь на общепринятое значение g, учился грамотно проводить эксперимент. Выяснил, что свободное падение – движение равноускоренное. Ускорение свободного падения не зависит от массы тела.

Гипотезу о том, что значения ускорения свободного падения должны быть близки к значению 9,8 м/с2 и отличаться только погрешностью измерений удалось подтвердить разными экспериментами. Наиболее точный результат ускорения свободного падения у меня получился с помощью математического маятника.

Поэтому для исследования изменения значения ускорения свободного падения с высотой я выбрал именно этот способ измерения. Погрешность составила не более 10%.

В дальнейшем я хотел бы самостоятельно исследовать зависимость значения ускорения свободного падения от географического положения.

2.1. Исторические сведения об открытии свободного падения и методах его измерения

Еще тысячелетия назад люди замечали, что большая часть предметов падает все быстрее и быстрее, а некоторые падают равномерно. Но как именно падают эти предметы – этот вопрос первобытных людей не занимал. Тем не менее нашлись люди, которые по мере возможностей начали исследовать это явление. Сначала они проделывали опыты с двумя предметами.

Например, брали два камня, и давали возможность им свободно падать, выпустив их из рук одновременно. Затем снова бросали два камня, но уже в стороны по горизонтали. Потом бросали один камень в сторону, и в тот же момент выпускали из рук второй, но так, чтобы он просто падал по вертикали. Люди извлекли из таких опытов много сведений о природе.

Из опытов с падающими телами люди установили, что маленький и большой камни, выпущенные из рук одновременно, падают с одинаковой скоростью. То же самое можно сказать о кусках свинца, золота, железа, стекла, и т.д. самых разных размеров.

Из подобных опытов выводиться простое общее правило: свободное падение всех тел происходит одинаково независимо от размера и материала, из которого тела сделаны. Между наблюдением за причинной связью явлений и тщательно выполненными экспериментами, вероятно, долго существовал разрыв.

Две тысячи лет назад некоторые древние ученые, по-видимому, проводили вполне разумные опыты с падающими телами. Великий греческий философ и ученый Аристотель, по-видимому придерживался распространенного представления о том, что тяжелые тела падают быстрее, чем легкие.

Аристотель и его последователи стремились объяснить, почему происходят те или иные явления, но не всегда заботились о том, чтобы пронаблюдать, что происходит и как происходит. Он говорил, что тела стремятся найти свое естественное место на поверхности Земли.

В XIV столетии группа философов из Парижа восстала против теории Аристотеля и предложила значительно более разумную схему, которая передавалась из поколения в поколение и распространилась до Италии, оказав двумя столетиями позднее влияние на Галилея.

Парижские философы говорили об ускоренном движении и даже о постоянном ускорении, объясняя эти понятия архаичным языком. Великий итальянский ученый Галилео Галилей обобщил имеющиеся сведения и представления и критически их проанализировал, а затем описал и начал распространять то, что считал верным. Галилей понимал, что последователей Аристотеля сбивало с толку сопротивление воздуха. Он указал, что плотные предметы, для которых сопротивление воздуха несущественно, падают почти с одинаковой скоростью.

Предположив, что произошло бы в случае свободного падения тел в вакууме, Галилей вывел следующие законы падения тел для идеального случая: все тела при падении движутся одинаково; начав падать одновременно, они движутся с одинаковой скоростью; движение происходит с «постоянным ускорением»; темп увеличения скорости тела не меняется, т.е.

за каждую последующую секунду скорость тела возрастает на одну и ту же величину.

Существует легенда, будто Галилей проделал большой демонстрационный опыт, бросая легкие и тяжелые предметы с вершины Пизанской падающей башни (одни говорят, что он бросал стальные и деревянные шары, а другие утверждают, будто это были железные шары весом 0,5 и 50 кг).

Описаний такого публичного опыта нет, и Галилей, несомненно, не стал таким способом демонстрировать свое правило. Галилей знал, что деревянный шар намного отстал бы при падении от железного, но считал, что для демонстрации различной скорости падения двух неодинаковых железных шаров потребовалась бы более высокая башня.

Итак, мелкие камни слегка отстают в падении от крупных, и разница становится тем более заметной, чем большее расстояние пролетают камни. И дело тут не просто в размере тел: деревянный и стальной шары одинакового размера падают не строго одинаково. Галилей знал, что простому описанию падения тел мешает сопротивление воздуха.

Но он мог лишь уменьшить его и не мог устранить его полностью. Поэтому ему пришлось вести доказательство, переходя от реальных наблюдений к постоянно уменьшающимся сопротивлением воздуха к идеальному случаю, когда сопротивление воздуха отсутствует. Позже, оглядываясь назад, он смог объяснить различия в реальных экспериментах, приписав их сопротивлению воздуха.

Вскоре после Галилея были созданы воздушные насосы, которые позволили произвести эксперименты со свободным падением в вакууме. С этой целью Ньютон выкачал воздух из длинной стеклянной трубки и бросил сверху одновременно птичье перо и золотую монету.

Даже столь сильно различающиеся по своей плотности тела падали с одинаковой скоростью. Именно этот опыт дал решающую проверку предположения Галилея. Опыты и рассуждения Галилея привели к простому правилу, точно справедливому в случае свободного падения тел в вакууме.

Это правило в случае свободного падения тел в воздухе выполняется с ограниченной точностью. Поэтому верить в него, как в идеальный случай нельзя. Для полного изучения свободного падения тел необходимо знать, какие при падении происходят изменения температуры, давления, и др.

, то есть исследовать и другие стороны этого явления. Так Галилей установил признак равноускоренного движения:

S1 : S2 : S3 : … = 1 : 2 : 3 : … (при V0 = 0)

Таким образом, можно предположить, что свободное падение есть равноускоренное движение. Так как для равноускоренного движения перемещение рассчитывается по формуле, то если взять три некоторые точки 1,2,3 через которые проходит тело при падении и записать: (ускорение при свободном падении для всех тел одинаково), получится, что отношение перемещений при равноускоренном движении равно:

S1 : S2 : S3 = t12 : t22 : t32 (2)

Источник: https://rosuchebnik.ru/material/izmerenie-uskoreniya-svobodnogo-padeniya-na-razlichnykh-vysotakh-pri-pomoshchi-matematicheskogo-maya-5198/

Свободное падение тел

Найти зависимость ускорения свободного падения от высоты

Что такое свободное падение? Это падение тел на Землю при отсутствии сопротивления воздуха. Иначе говоря — падение в пустоте. Конечно, отсутствие сопротивления воздуха — это вакуум, который нельзя встретить на Земле в нормальных условиях. Поэтому мы не будем брать силу сопротивления воздуха во внимание, считая ее настолько малой, что ей можно пренебречь.

Ускорение свободного падения

Проводя свои знаменитые опыты на Пизанской башне Галилео Галилей выяснил, что все тела, независимо от их массы, падают на Землю одинаково. То есть, для всех тел ускорение свободного падения одинаково. По легенде, ученый тогда сбрасывал с башни шары разной массы.

Ускорение свободного падения

Ускорение свободного падения — ускорение, с которым все тела падают на Землю. 

Ускорение свободного падения приблизительно равно 9,81 мс2 и обозначается буквой g. Иногда, когда точность принципиально не важна, ускорение свободного падения округляют до 10 мс2.

Земля — не идеальный шар, и в различных точках земной поверхности, в зависимости от координат и высоты над уровнем моря, значение g варьируется. Так, самое большое ускорение свободного падения — на полюсах (≈9,83 мс2), а самое малое — на экваторе (≈9,78 мс2).

Свободное падение тела

Рассмотрим простой пример свободного падения. Пусть некоторое тело падает с высоты h с нулевой начальной скоростью. Допустим мы подняли рояль на высоту h и спокойно отпустили его. 

Свободное падение — прямолинейное движение с постоянным ускорением. Направим ось координат от точки начального положения тела к Земле. Применяя формулы кинематики для прямолинейного равноускоренного движения, можно записать.

h=v0+gt22.

Так как начальна скорость равна нулю, перепишем:

h=gt22.

Отсюда находится выражение для времени падения тела с высоты h:

 t=2hg.

Принимая во внимание, что v=gt, найдем скорость тела в момент падения, то есть максимальную скорость:

v=2hg·g=2hg.

Движение тела, брошенного вертикально вверх

Аналогично можно рассмотреть движение тела, брошенного вертикально вверх с определенной начальной скоростью. Например, мы бросаем вверх мячик.

Пусть ось координат направлена вертикально вверх из точки бросания тела. На сей раз тело движется равнозамедленно, теряя скорость. В наивысшей точки скорость тела равна нулю. Применяя формулы кинематики, можно записать:

v=v0-gt.

Подставив v=0, найдем время подъема тела на максимальную высоту:

t=v0g.

Время падения совпадает со временем подъема, и тело вернется на Землю через t=2v0g.

 Максимальная высота подъема тела, брошенного вертикально:

h=v022g.

Взглянем на рисунок ниже. На нем приведены графики скоростей тел для трех случаев движения с ускорением a=-g. Рассмотрим каждый из них, предварительно уточнив, что в данном примере все числа округлены, а ускорение свободного падения принято равным 10мс2.

Первый график — это падение тела с некоторой высоты без начальной скорости. Время падения tп=1с. Из формул и из графика легко получить, что высота, с которой падало тело, равна h=5м.

Второй график — движение тела, брошенного вертикально вверх с начальной скоростью v0=10 мс. Максимальная высота подъема h=5м. Время подъема и время падения tп=1с.

Третий график является продолжением первого. Падающее тело отскакивает от поверхности и его скорость резко меняет знак на противоположный. Дальнейшее движение тела можно рассматривать по второму графику.

Движение тела, брошенного под углом к горизонту

С задачей о свободном падении тела тесно связана задача о движении тела, брошенного под определенным углом к горизонту. Так, движение по параболической траектории можно представить как сумму двух независимых движений относительно вертикальной и горизонтальной осей.

Вдоль оси OY тело движется равноускоренно с ускорением g, начальная скорость этого движения — v0y. Движение вдоль оси OX — равномерное и прямолинейное, с начальной скоростью v0x.

Условия для движения вдоль оси ОХ:

x0=0; v0x=v0cosα; ax=0.

Условия для движения вдоль оси OY:

y0=0; v0y=v0sinα; ay=-g.

Приведем формулы для движения тела, брошенного под углом к горизонту.

Время полета тела:

t=2v0sinαg.

Дальность полета тела:

L=v02sin2αg.

Максимальная дальность полета достигается при угле α=45°.

Lmax=v02g.

Максимальная высота подъема:

h=v02sin2α2g.

Отметим, что в реальных условиях движение тела, брошенного под углом к горизонту, может проходить по траектории, отличной от параболической вследствие сопротивления воздуха и ветра. Изучением движения тел, брошенных в пространстве, занимается специальная наука — баллистика.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/fizika/kinematika/svobodnoe-padenie-tel/

Ускорение свободного падения — урок. Физика, 9 класс

Найти зависимость ускорения свободного падения от высоты

Ускорение свободного падения характеризует то, как быстро будет увеличиваться скорость тела при свободном падении. Свободным падением называется ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести. Из физики известно, что ускорение свободного падения на Земле составляет \(9,8\) мс2.

Вопрос, почему эта величина именно такая, мы рассмотрим в этой теме.

Ускорение свободного падения в упрощённом виде можно рассчитать по формуле g=Fm, которая получается из формулы F=m⋅g, где \(F\) — сила тяжести либо вес тела в состоянии покоя или равномерного прямолинейного движения, \(m\) — масса тела, которое притягивает планета, \(g\) — ускорение свободного падения.

Сила тяжести, действующая на тело, зависит от массы тела, массы планеты, притягивающей тело, и от расстояния, на котором находится тело от центра массы планеты.

F=G⋅m1⋅m2R2, где

\(F\) — сила тяжести, Н;

\(G\) — гравитационная постоянная, G=6,6720⋅10−11Н⋅м2кг2;

\(R\) — расстояние между центрами планеты и объекта в метрах. Если притягиваемое тело находится на поверхности планеты, тогда \(R\) равен радиусу планеты (если планета имеет сферическую форму);

 m1 и m2 — масса планеты и притягиваемого тела, выраженные в кг.

Обрати внимание!

Если мы объединим обе формулы, тогда получим формулу g=G⋅mR2, с помощью которой можно вычислить ускорение свободного падения на любом космическом объекте — на планете или звезде.

Пример:

ускорение свободного падения у поверхности Земли вычисляют таким образом:

g=G⋅МЗRЗ2=6,6720⋅10−11⋅5,976⋅10246,371⋅1062=9,8мс2, где

\(g\) — ускорение свободного падения;

\(G\) — гравитационная постоянная, G=6,6720⋅10−11Н⋅м2кг2;

МЗ — масса Земли в кг;

RЗ — радиус Земли в м.

Практически на Земле ускорение свободного падения на полюсах немного больше (\(9,832\) мс2), чем на экваторе (\(9,78\) мс2), так как Земля не имеет форму идеального шара, а на экваторе скорость вращения больше, чем на полюсах. Среднее значение ускорения свободного падения у поверхности Земли равно \(9,8\) мс2.

Ускорение свободного падения у поверхности любого космического тела — на планете или звезде — зависит от массы этого тела и квадрата его радиуса. Таким образом, чем больше масса звезды и чем меньше её размеры, тем больше значение ускорения свободного падения у её поверхности.

При помощи формулы расчёта ускорения свободного падения и измерений, проведённых для удалённых объектов, учёные-физики могут определить величину ускорения свободного падения на любой планете или звезде.

Рис. \(1\). Планеты Солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун; и карликовые планеты: Церера, Плутон, Эрида (\(2003\) UB \(313\))

Таблица \(1\). Ускорение свободного падения и другие характеристики планет Солнечной системы и карликовых планет

Небесное телоУскорениесвободного падения, мс2Диаметр, км Расстояниедо Солнца, миллионы кмМасса, кгСоотношение с массой Земли
Меркурий\(3,7\)\(4878\)\(58\)\(3,3*\)1023\(0,055\)
Венера\(8,87\)\(12103\)\(108\)\(4,9*\)1024\(0,82\)
Земля\(9,8\)\(12756,28\)\(150\)\(6,0*\)1024\(1\)
Марс\(3,7\)\(6794\)\(228\)\(6,4*\)1023\(0,11\)
Юпитер\(24,8\)\(142984\)\(778\)\(1,9*\)1027\(317,8\)
Сатурн\(10,4\)\(120536\)\(1427\)\(5,7*\)1026\(95,0\)
Уран\(8,87\)\(51118\)\(2871\)\(8,7*\)1025\(14,4\)
Нептун\(10,15\)\(49532\)\(4498\)\(1,02*\)1026\(17,1\)
Плутон\(0,66\)\(2390\)\(5906\)\(1,3*\)1022\(0,0022\)
Луна\(1,62\)\(3473,8\)\(0,3844 \)(до Земли)\(7,35*\)1022\(0,0123\)
Солнце\(274,0\)\(1391000\)\(2,0*\)1030\(332900\)

Нейтронные звёзды имеют малый диаметр — порядка десятков километров — а масса их сопоставима с массой Солнца. Поэтому гравитационное поле у них очень сильное.

Пример:

если диаметр нейтронной звезды равен \(20\) км, а масса её в \(1,4\) раза больше массы Солнца, тогда ускорение свободного падения будет в \(200000000000\) раз больше, чем у поверхности Земли.

Его величина приблизительно равна 2⋅1012 мс2. Значение ускорения свободного падения для нейтронной звезды может достигать значения 7⋅1012 мс2.

Источники:

E. Šilters, V. Reguts, A. Cābelis. «Fizika, 10 klasei», Lielvārds, 2004, 256 lpp.

(Шилтерс Э., Регутс В., Цабелис А. «Физика для 10 класса», Lielvārds, 2004, 256 стр.)

http://astro-observer.com/solarsystem/compare/mass.html

http://solarsystem.nasa.gov/index.cfm

http://imagine.gsfc.nasa.gov/docs/science/know_l1/pulsars.html

http://livingsta.hubpages.com/hub/Planet-Earth-for-Kids

http://www.astronomy.ohio-state.edu/~pogge/Ast161/Unit6/

Источник: https://www.yaklass.ru/p/fizika/9-klass/zakony-vzaimodeistviia-i-dvizheniia-tel-osnovy-dinamiki-18748/svobodnoe-padenie-18753/re-38f1cc22-8828-46a9-bcd2-e2d9805926e3

Ускорение свободного падения на Земле и других небесных телах. урок. Физика 9 Класс

Найти зависимость ускорения свободного падения от высоты

На предыдущем уроке мы обсудили вопрос, связанный с законом всемирного тяготения. Теперь перед нами стоит задача – рассмотреть, как этот закон связан с уже известным ускорением свободного падения.

 Ускорение свободного падения впервые определил итальянский ученый Галилео Галилей.

Как вы помните, он измерял ускорение движения тел, которые двигались по наклонной плоскости, и ему удалось установить, что предельное ускорение таких тел (а это и есть ускорение свободного падения) составляет .

Однако почему именно такое значение у этого ускорения, стало ясно только после открытия закона всемирного тяготения. Вспомним, что сила тяжести на Земле – это проявление действия закона всемирного тяготения для тел, которые находятся на поверхности Земли.

Рис. 1. Сила тяжести, действующая на тело на Земле

При этом вся масса Земли условно полагается сосредоточенной в ее центре. Радиус Земли – это расстояние между телами (рис. 1). Само тело, которое находится над поверхностью Земли, – то самое тело, которое притягивается. Запишем соответствующие формулы.

Сила тяжести на Земле:

, где – масса тела, которое находится на поверхности Земли, — ускорение свободного падения.

Закон всемирного тяготения в данном случае имеет вид:

Здесь  – масса Земли,  – масса тела,  – радиус Земли,  – гравитационная постоянная. Если сравнить выражение для силы тяжести и для гравитационной силы, получим для ускорения свободного падения:

Обратите внимание: ускорение свободного падения зависит от массы Земли и от радиуса Земли. Если они будут изменяться, значит, будет изменяться и ускорение свободного падения.

Как известно, Земля по форме не идеальный шар, а тело, которое немного сплюснуто с полюсов, поэтому полярный радиус несколько меньше, чем экваториальный (рис. 2). В этом случае надо понимать, что ускорение свободного падения на полюсе будет больше, а на экваторе – меньше. В общем случае ускорение свободного падения зависит от широты местности.

Рис. 2. Разность экваториального и полярного радиусов

Необходимо отметить еще вот что. Земля вращается, и вращательное движение Земли тоже влияет на ускорение свободного падения.

Ускорение свободного падения на экваторе будет отличаться еще и по этой причине.

Изменение ускорения свободного падения по всем вышеуказанным причинам достаточно незначительное, поэтому мы считаем, что ускорение свободного падения на Земле – величина постоянная и составляет .

Как видите, ускорение свободного падения зависит от радиуса Земли, значит, если увеличивать радиус, то ускорение свободного падения будет уменьшаться. Как такое может быть? Если мы поднимаем тело над поверхностью Земли (например, тот же спутник), то расстояние будет определяться суммой радиуса Земли и высоты над ее поверхностью (рис. 3).

Рис. 3. Тело, поднятое над поверхностью Земли.

В этом случае ускорение свободного падения тоже будет уменьшаться.

Ускорение свободного падения обратно пропорционально квадрату расстояния. Поэтому если высота будет равна радиусу Земли, то расстояние будет в 2 раза больше от центра Земли, чем для тела на поверхности. В этом случае ускорение свободного падения уменьшится в 4 раза.

Следует заметить, что многие спутники летают на небольшом расстоянии, приблизительно 200–300 км от поверхности Земли. На этом расстоянии ускорение свободного падения изменяется, но незначительно, поэтому мы будем считать, что в этом случае ускорение все-таки величина постоянная.

Обратите внимание на тот факт, что сила тяжести, как и ускорение свободного падения, с высотой будет убывать (по мере удаления от Земли сила тяжести будет убывать).

Как изменение  делает нас богаче

Дело в том, что измерение ускорения свободного падения в различных точках Земли является мощнейшим способом геологической разведки. Таким способом (без рытья шахт) можно определять наличие полезных ископаемых в толще земной коры. Первый способ: измерение  при помощи пружинных весов (рис. 4). Они обладают феноменальной чувствительностью.

Рис. 4. Геологические весы

Второй способ: измерение  при помощи математического маятника (груз, подвешенный на длинной нити). Оказывается, что период (время одного полного колебания) колебания такого маятника зависит от ускорения свободного падения.

Чем больше ускорение свободного падения, тем меньше период. То есть, измеряя период маятника в разных точках Земли, можно определить изменение ускорения свободного падения. Геологи используют очень точные маятники (рис. 5), которые позволяют измерять ускорение свободного падения с точностью до миллионных долей.

Рис. 5. Прибор с маятником для разведки полезных ископаемых

Что является нормой для величины ускорения свободного падения?

Как известно Земля имеет фору геоида (сплюснута у полюсов). Это значит, что значение ускорения свободного падания у полюсов больше чем на экваторе. Но на одной и той же географической широте ускорение свободного падения, при прочих равных условиях, должно быть одинаково. Измеряя в рамках одной широты ускорение свободного падения в разных точках, можно судит о наличии полезных ископаемых.

Представьте себе, что вы находитесь на широте Москвы. Допустим, норма ускорения свободного падения на этой широте равна . В рамках данной широты мы смещаемся западнее или севернее и замечаем, что  изменилось, теперь оно равно .

Это означает, что мы наткнулись на место с залежами тяжелых ископаемых. Если же ускорение свободного падения уменьшилось, значит, там есть пустоты или залежи легких солей. Как правило, рядом с залежами легких солей находятся залежи нефти. Данный способ называется гравиметрической разведкой. Таким способом были обнаружены залежи нефти в Казахстане и Западной Сибири.

На рис. 6 изображены зоны, где ускорение свободного падения больше  (красные области) или меньше (синие области).

Рис. 6. Области, где ускорение свободного падения отличается от

Залежи тяжелых веществ или наличие пустот оказывают влияние на направление ускорения свободного падения. Если вы проводите измерение  вблизи большой горы, то это массивное тело будет оказывать влияние на направление  (рис. 7).

Рис. 7. Маятник в нормальных условиях и под воздействием массивного объекта

Теперь обсудим то, как определяется ускорение свободного падения на других телах.

Обратимся к уравнению, которое мы использовали для определения ускорения свободного падения на поверхности Земли: .

В этом уравнении вместо массы и радиуса Земли можно подставить массу и радиус любой другой планеты. Тогда мы получим ускорение свободного падения на любой из интересующих нас планет. В первую очередь нас интересует Луна. Ускорение свободного падения на Луне будет приблизительно равно: .

Как видно, ускорение свободного падения на Луне сильно отличается от ускорения свободного падения на Земле. Значит, если вдруг мы окажемся на Луне, мы почувствуем себя гораздо легче, чем на родной Земле. Например, у первых лунных космонавтов скафандр был массой .

Сила тяжести, действующая на скафандр на Земле:

Сила тяжести, действующая на скафандр на Луне:

Такую силу тяжести, как на Луне, на Земле бы имел скафандр массой :

 на разных небесных телах: сравнительная таблица

Значение величины ускорения свободного падения равное является самым комфортным для человека. Рассмотрим, какие значения принимает ускорение свободного падения на других небесных телах (Солнце, планеты, спутники).

Чем массивнее небесное тело, тем больше .

Рассмотрим таблицу для ускорения свободного падения для различных небесных тел.

Небесное тело

Луна

1,62

Солнце

273,1

Меркурий

3,72

Земля

9,81

Уран

8,86

Винера

8,88

Сатурн

10,44

Табл. 1. Ускорение свободного падения для различных небесных тел

Как видно,  на Луне в 6 раз меньше, чем на Земле. Передвигаться на Луне гораздо легче, чем на Земле. На Солнце  в 30 раз больше, чем на Земле.

Даже не учитывая больших температур, передвигаться на Солнце с учетом перегрузки в 30 раз невозможно. У Урана, Венеры и Сатурна более близкие значения  с Землей. На Уране и Сатурне достаточно холодно.

А вот на Венере возможно существование каких-то форм жизни или возможно путешествие человека и организация базы для временного пребывания.

Зная ускорение свободного падения на небесных телах, можно посчитать и их среднюю плотность. Зная среднюю плотность, можно предсказывать то, из чего состоят небесные тела, и определять их строение.

При помощи полученной формулы мы можем определить массу тех планет и небесных объектов, которые нас интересуют. Посмотрим на формулу, которая позволяет это сделать. Рассмотрим это на примере Земли. Из формулы для ускорения свободного падения несложно получить: .

Эта формула позволяет определить массу Земли. Обычно всегда спрашивают, как удалось взвесить Землю?

Никто ее не взвешивал, а, воспользовавшись законом всемирного тяготения и, зная ускорение свободного падения на поверхности Земли, можно легко массу Земли вычислить.

Масса Земли все время уточняется. Все понимают, что эта величина является очень важной. Когда мы знаем массу Земли, то, пользуясь т. н. законами Кеплера, несложно определить массу других небесных тел. Если мы знаем расстояние между Землей и другой планетой, знаем, как они взаимодействуют друг с другом, мы можем легко определить массу других тел.

Поэтому в астрономии очень часто за единицу измерения принимают массу Земли, говорят, что масса Земли равна 1 единице, и все другие массы планет определяют уже в массах Земли.

Определение средней плотности Земли

Знание ускорения свободного падения на поверхности Земли и радиуса Земли дают возможность определить среднюю плотность вещества Земли.

Вспомним формулу для ускорения свободного падения:

Массу можно вычислить через плотность и объем тела:

Земля имеет форму шара, поэтому ее объем можно вычислить по формуле:

Из приведенных выше формул можно получить зависимость  от плотности:

Выразим из данной формулы плотность и подставим все известные величины:

То есть кубик усредненного земного вещества размерами 1 см·1 см·1 см будет весить 5,5 грамм. Если взять вещество с поверхности Земли, то его плотность будет меньше усредненной (). Значит, внутри Земли (рис. 8) сосредоточено что-то тяжелое. Например, тяжелые металлы. У них высокая плотность.

Рис.8 Строение Земли

По современным представлениям, в центре Земли находится раскаленное железное ядро. Считается, что Земля могла образоваться из метеоритов. Они сталкивались, постепенно образовывалось земное вещество, гравитационные силы стягивали наиболее тяжелые фракции к центру. В результате образовалось ядро. Более легкие фракции оказались на периферии.

Закон всемирного тяготения и ускорение свободного падения имеют большое значение. В первую очередь для запуска искусственных спутников Земли.

Список дополнительной литературы

  1. Кикоин А.К. Вращение Земли и ускорение свободного падения //Квант. – 1984. – № 1. – С. 32–34.
  2. Кикоин И.К., Кикоин А.К. Физика: Учебник для 9 класса средней школы. – М.: Просвещение, 1992.
  3. Сивухин Д.В. Общий курс физики. – М.: Государственное издательство технико-теоретической литературы, 2005. – Т. 1. Механика. – С. 372.
  4. Смородинский Я. Закон всемирного тяготения //Квант. – 1990. – № 12. – С. 8–13; 51.
  5. Физика: Механика. 10 кл.: Учебник для углубленного изучения физики / под ред. Г.Я. Мякишева. – М.: Дрофа, 2002.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «class-fizika.narod.ru» (Источник)
  2. Интернет-портал «100ballov.kz» (Источник)
  3. Интернет-портал «eduspb.com» (Источник)

Домашнее задание

  1. Где на Земле ускорение свободного падения выше: на полюсах или на экваторе? Ответ обоснуйте.
  2. В чем заключались опыты Галилея по определению ускорения свободного падения?
  3. Определите, на какой высоте над Землей ускорение свободного падения в три раза мень­ше его значения на поверхности Земли.
  4. Известно, что Земля имеет определенную массу, но как удалось взвесить планету?

Источник: https://interneturok.ru/lesson/physics/9-klass/zakony-vzaimodejstviya-i-dvizheniya-tel/uskorenie-svobodnogo-padeniya-na-zemle-i-drugih-nebesnyh-telah

Biz-books
Добавить комментарий