Найти момент инерции  системы относительно оси

Содержание
  1. Динамика вращательного движения. Момент инерции. Теорема Штейнера. Кинетическая энергия вращающегося тела. Момент силы. Уравнение динамики вращательного движения. Момент импульса. Закон сохранения момента импульса
  2. Момент инерции: относительно оси вращения, материальной точки и твердых тел
  3. Момент инерции тела относительно оси вращения
  4. Момент инерции материальной точки
  5. Момент инерции сложного тела с частицами
  6. Момент инерции твердого тела
  7. Момент инерции обода
  8. Момент инерции шара
  9. Момент инерции сферы
  10. Момент инерции к оси цилиндра
  11. Момент инерции к оси через центр цилиндра
  12. Момент инерции к оси перпендикулярной поверхности пластины
  13. Момент инерции в физике
  14. Что такое инерция?
  15. Определение момента инерции
  16. Формула момента инерции
  17. Теорема Гюйгенса – Штейнера
  18. Моменты инерции простейших объектов
  19. Рекомендованная литература и полезные ссылки
  20. Момент инерции, видео

Динамика вращательного движения. Момент инерции. Теорема Штейнера. Кинетическая энергия вращающегося тела. Момент силы. Уравнение динамики вращательного движения. Момент импульса. Закон сохранения момента импульса

Найти момент инерции  системы относительно оси

ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ.

§1 Момент инерции. Теорема Штейнера

   Момент инерции материальной точки равен

   Моментом инерции системы относительно оси вращения называется физическая величина, равная сумме произведения масс n материальных точек системы на квадраты их расстояний до рассматриваемой оси.

Момент инерции тела в случае непрерывного распределения массы равен

-интегрируется по всему объёму.

1. Найдем момент инерции однородного диска относительно оси, перпендикулярной к плоскости диска и проходящей через его центр. Разобьем диск на кольцевые слои толщиной dr. Все точки слоя будут находиться на одинаковом расстоянии от оси, равномr. Объем такого слоя равен    

Площадь кольца

2. Полый тонкостенный цилиндр радиуса R (обруч, велосипедное колесо и тому подобное).

3. Сплошной цилиндр или диск радиуса R

4. Прямой тонкий длиной    стержень, ось перпендикулярна стержню и проходит через его середину.

5. Шар радиуса R, относительно оси, проходящей через его центр.

Если известен момент инерции тела относительно оси, проходящей через его центр масс, момент инерции относительно любой другой оси параллельной данной, определяется с помощью теоремы Штейнера: момент инерции тела І относительно параллельной оси вращения равен моменту инерции Іс относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы m тела на квадрат расстояния а между осями

Например, для обруча на рисунке момент инерции относительно оси O’O’, равен

6. Момент инерции прямого стержня длиной , ось перпендикулярна стержню и проходит через его конец.

§2 Кинетическая энергия вращения

Рассмотрим абсолютно твердое тело, вращающееся вокруг неподвижной оси Z, проходящей через него, с угловой скоростью ω. Так как тело является абсолютно твердым, следовательно, все точки тела будут вращатьсяс одинаковой угловой скоростью  

    Если разбить тело на малые объёмы с элементарными массами m1,m2… находящиеся на расстоянии r1,r2…, от оси вращения, то кинетическую энергию тела можно записать в виде

Известно, что  или     

   Из сравнения Wk. вр. с  Wk. поступательного движения () следует, что момент инерции вращательного движения заменяет массу во вращательном движении и является мерой инертности тела.

   Если тело участвует в поступательном и вращательном движении одновременно, то его кинетическая энергия

Например, цилиндр катиться без скольжения по плоскости.

§3 Момент силы.

Уравнение динамики вращательного движения твердого тела

   Моментом силы  относительно неподвижной точкиO называется псевдовекторная величина  равная векторному произведению радиус-вектора , проведенному из точки O в точку приложения силы, на силу  

Модуль момента силы:

— псевдовектор, его направление совпадает с направлением плоскости движения правого винта при его вращении от  к .

Направление момента силы можно также определить по правилу левой руки: четыре пальца левой руки поставить по направлению первого сомножителя , второй сомножитель  входит в ладонь, отогнутый под прямым углом большой палец укажет направления момента силы  . Вектор момента силы всегда перпендикулярен плоскости, в котоой лежат векторы  и .

 -где  кратчайшее расстояния между линией действия силы и точкой О называется плечом силы.

Моментом силы  относительно неподвижной оси Z называется скалярная величина равнаяпроекции на эту ось вектора момента силы , определённого относительно произвольной точки O данной оси Z. Если ось Z перпендикулярна плоскости, в которой лежат векторы  и , т.е. совпадает с направлением вектора , то момент силы представляется в виде вектора совпадающего с осью.

Ось, положение которой в пространстве остается неизменнымпривращении вокруг тела в отсутствие внешних сил,называется свободной осью тела.

  Для тела любой формы и с произвольным распределением массы существует 3 взаимно перпендикулярных, проходящих через центр инерции тела оси, которые могут служить свободными осями:они называются главными осями инерции тела.

   Найдем выражение для работы при вращательном движении тела. Пусть на массу m твердого тела действует внешняя сила . Тогда работа этой силы за время dt равна   

  Осуществим в смешанном произведении векторов циклическую перестановку сомножителей, воспользовавшись правилом

Тогда

     Работа при вращении тела равна произведению момента действия силы на угол поворота . Работа при вращении тела идет на увеличение его кинетической энергии:

Поэтому

или

Следовательно,

— уравнение динамики вращательного движения

      Если ось вращения совпадает с главной осью инерции, проходящей через центр масс, то выполняется векторное равенство

   І — главный момент инерции (момент инерции относительно главной оси)

§4 Момент импульса. Закон сохранения момента импульса

   Моментом импульса материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением 

;  

Модуль момента импульса:

— радиус-вектор, проведённый из точки O в точку А, ? — плечо импульса (кратчайшее расстояние от точки О до линии действия импульса)

— импульс материальной точки.

 — псевдовектор, его направление определяется по правилу левой руки.

Моментом импульса твердого тела относительно неподвижной оси  Z  называется скалярная величина равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки O данной оси. Значение момента импульса   не зависит от положения точки O на оси Z.

   Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц:

Продифференцируем по  dt    

основное уравнение динамики вращательного движения.

Вообще выполняется векторное равенство

В замкнутой системе момент внешних сил равен нулю

   Закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т.е. не изменяется с течением времени

§5 Величины, характеризующие поступательное и вращательное движение и связь между ними:

Поступательное движениеВращательное движениеСвязь
1 — путь
2 — cкорость;
3 — ускорение; – угловое ускорение
4m — масса  — момент инерции
5 — uмпульс; – момент импульса
6;
7; – кин. энергия вращательного движения
8dA -элементарная  работа;dA —  элементарная работа вращательного движения

Источник: http://bog5.in.ua/lection/mechanics_lect/lect8_meh.html

Момент инерции: относительно оси вращения, материальной точки и твердых тел

Найти момент инерции  системы относительно оси

В статье узнаете что такое момент инерции, как влияет ось вращения, а также момент вращения для материальной точки, множества частиц и для твердых тел.

Момент инерции, обозначенный буквой I, является физической величиной, характерной для вращательного движения тела. Это значение предполагает постоянное значение для данного тела и конкретной оси его вращения.

 Величина момента инерции зависит от веса тела, положения оси вращения, вокруг которой вращается тело и распределения его массы. Поэтому можно написать, что момент инерции тела информирует нас о том, как масса вращающегося тела распределяется вокруг фиксированной оси его вращения.

 Чем выше значение момента инерции, тем сложнее установить или изменить вращательное движение данного тела (например, уменьшить или увеличить его угловую скорость).

Момент инерции тела относительно оси вращения

На следующем рисунке показано, как выбор оси вращения тела влияет на значение момента его инерции и, следовательно, на легкость/сложность его вращения. На рисунках а) и б) показан однородный цилиндр с радиусом r и высотой h, который вращается вокруг продольной оси (рисунок а) и вокруг оси, перпендикулярной цилиндру, проходящему через его центр (рисунок б).

Ролик с радиусом r и высотой h вращается вокруг продольной оси (рисунок а) и оси, перпендикулярной цилиндру, проходящему через его центр (рисунок б)). Вес ролика в случае а) гораздо более сфокусирован вблизи его оси вращения, чем в случае б), поэтому цилиндр с рисунка а) вращать легче, чем ролик с рисунка б).

В обоих случаях мы имеем дело с одним и тем же телом, но в первом случае (рис. А) легче вращать ролик.

 Причиной такой ситуации является различное распределение веса цилиндра вокруг его оси вращения: при вращении цилиндра вокруг продольной оси масса ролика более сфокусирована вблизи оси вращения, чем во второй.

 В результате получается меньшее значение момента инерции цилиндра из рисунка а), а не цилиндра из рисунка б).

Если вы не хотите читать всю информацию советуем вам посмотреть видео про момент силы, в котором вы узнаете абсолютно все:

Момент инерции материальной точки

Чтобы вычислить момент инерции и вращение отдельной частицы вокруг заданной оси вращения, используем следующее выражение:

где m — масса частицы, r — расстояние частицы от оси вращения. 

Момента инерции измеряется в кг ⋅ м2 в системе СИ.

Момент инерции сложного тела с частицами

Момент инерции тела, состоящего из n частиц, равен сумме моментов инерции каждой частицы относительно данной оси вращения.

 Например, для тела, состоящего из четырех частиц, имеем: 

где m1, m2, m3 и m4 — массы частиц, которые составляют тела, r1, r2, r3 и r4, расстояние от оси вращения соответственно частиц с массами m1, m2, m3 и m4.

Момент инерции твердого тела

Когда тело состоит из очень многих частиц, расположенных близко друг к другу, сумма моментов инерции в приведенном выше уравнении заменяется интегралом. Если расширенное тело разделено на бесконечно малые элементы с массой dm, удаленной от оси вращения на величину r, момент инерции I будет равен: 

На следующем рисунке показаны выбранные расширенные тела с их моментами инерции, рассчитанными для осей вращения, указанных на чертежах.

Момент инерции обода

Момент инерции обода будет равен I=mr2

Момент инерции шара

Момент инерции шара будет равен I=2/5mr2

Момент инерции сферы

Момент инерции сферы будет равен I=2/3mr2

Момент инерции к оси цилиндра

Момент инерции к оси цилиндра будет равен I=1/2mr2

Момент инерции к оси через центр цилиндра

Момент инерции к оси цилиндра, проходящей через центр цилиндра будет равен I=1/4mr2+1/12mh2

Момент инерции к оси перпендикулярной поверхности пластины

Момент инерции к оси перпендикулярной поверхности пластины, которая проходит через ее центр будет равен I=1/12m(x2+y2)

Важное примечание:
при вводе значения момента инерции I для данного тела не забывайте всегда указывать ось вращения, для которой было рассчитано значение I.

Источник: https://meanders.ru/moment-inercii.shtml

Момент инерции в физике

Найти момент инерции  системы относительно оси

  • Что такое инерция?
  • Определение момента инерции
  • Формула момента инерции
  • Теорема Гюйгенса – Штейнера
  • Моменты инерции простейших объектов
  • Рекомендованная литература по теме и полезные ссылки
  • Момент инерции, видео
  • Что такое инерция?

    Инерция в физике – способность тел определенное время сохранять состояние движения при отсутствии действия внешних сил. Впрочем, понятие инерции имеет частое применение не только в физике, но и в нашей повседневной жизни.

    Так обычно «инертным» называют человека, который совершенно не проявляет никакой инициативы, делают только то, что ему скажут другие, и делает это крайне медленно, без какого-либо энтузиазма.

    «Движется по инерции», – говорим мы, когда хотим подчеркнуть, что что-то делается без какого-либо смысла, а просто потому, что так было заведено когда-то или в силу наработанной годами привычки.

    И если с понятием инерции все более-менее понятно, благодаря таким вот житейским примерам, то термин «момент инерции» требует более детального пояснения, чем мы и займемся в нашей статье.

    Определение момента инерции

    Со школьной программы по физике мы прекрасно знаем, что масса тела является мерой его инертности.

    Например, если в супермаркете сильно толкнуть две тележки, одна из которых будет пустой, а вторая нагруженной разными товарами, то впоследствии остановить будет труднее тележку, нагруженную товарами в силу ее большей массы.

    Другими словами, чем больше у тела масса, тем большее на него воздействие инерции и тем больше нужно сил, чтобы изменить движение такого тяжелого тела.

    В приведенном примере тележка движется по прямой линии, то есть иными словами совершает поступательное движение. И если при поступательном движении какого-либо теле его масса является мерой его инерции, то при вращательном движении тела вокруг своей оси мерой его инерции будет величина, которая собственно и называется – момент инерции.

    Момент инерции – скалярная физическая величина, мера инертности тела при его вращении вокруг оси. Обычно обозначается буквой J и измеряется в килограммах, умноженных на квадратный метр. Такое академическое определение того, что такое момент инерции.

    Формула момента инерции

    Как рассчитать точное значение момента инерции? Для этого есть общая формула, помогающая физикам определять момент инерции любого тела. Если тело разбить на бесконечно маленькие кусочки с массой dm, то момент инерции будет равным сумме произведения этих элементарных масс на квадрат расстояния до оси вращения. Формула будет иметь такой вид:

    J – момент инерции, r – расстояние до оси вращения.

    Для материальной точки массы m, которая вращается вокруг оси на расстоянии r, данная формула будет иметь такой вид:

    Теорема Гюйгенса – Штейнера

    Говоря о моменте инерции невозможно не упомянуть о теореме двух математиков Гюйгенсе и Штейнере, которые дали формулировку определению характеристики параллельных осей.

    Теорема Гюйгенса – Штейнера гласит: момент инерции тела относительно произвольной оси равен сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.

    Если записать вышесказанное математической формулой, то получится следующее:

    Где d – расстояние между осями

    Эта теорема значительно облегчает решения многих физических задач, связанных с инерцией. К примеру, у Вас имеется объект произвольной формы, центробежная сила которого известна. При помощи формулы Штейнера можно вычислить момент инерции тела относительно любой оси параллельной линии, которая проходит через середину фигуры.

    Моменты инерции простейших объектов

    Несмотря на внешнюю простоту, вычисление моментов инерции для разных предметов предполагает знание интегралов, этих важных инструментов высшей математики. Для упрощения задачи создана таблица с вычислениями инерции для простых геометрических фигур: круга, квадрата, цилиндра и т. д.

    Так выглядят математические расчеты вычисления моментов инерции для круга и кольца.

    Аналогичным образом будет рассчитываться момент инерции цилиндра.

    Предлагаем вашему вниманию более детальную таблицу с формулами для расчета момента инерции для основных геометрических фигур: шара, сферы, диска, цилиндров, и т. д.

    Рекомендованная литература и полезные ссылки

    • Тарг С. М. Момент инерции // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1992. — Т. 3. — С. 206—207. — 672 с. — 48 000 экз. — ISBN 5-85270-019-3.
    • Showman, Adam P.; Malhotra, Renu. The Galilean Satellites (англ.) // Science. — 1999. — Vol. 286, no. 5437. — P. 77—84.

      — DOI:10.1126/science.286.5437.77. — PMID 10506564.

    • Margot, Jean-Luc; et al. Mercury’s moment of inertia from spin and gravity data (англ.) // Journal of Geophysical Research (англ.)русск. : journal. — 2012. — Vol. 117. — DOI:10.1029/2012JE004161.
    • Галкин И.Н. Внеземная сейсмология. — М.: Наука, 1988. — С. 42-73. — 195 с.

      — (Планета Земля и Вселенная). — 15 000 экз. — ISBN 502005951X.

    • Матвеев. А. Н. Механика и теория относительности. М.: Высшая школа, 1986. (3-е изд. М.: ОНИКС 21 век: Мир и Образование, 2003. — 432с.)
    • Трофимова Т. И. Курс физики. — 7-е изд. — М.: Высшая школа, 2001. — 542 с.
    • Алешкевич В. А., Деденко Л. Г.

      , Караваев В. А. Механика твердого тела. Лекции. Издательство Физического факультета МГУ, 1997.

    • Павленко Ю. Г. Лекции по теоретической механике. М.: ФИЗМАТЛИТ, 2002. — 392с.
    • Яворский Б. М., Детлаф А. А. Физика для школьников старших классов и поступающих в вузы: учебное пособие — М.: Дрофа, 2002, 800с.

      ISBN 5-7107-5956-3

    Момент инерции, видео

    И в завершение образовательное видео по теме нашей статьи.

    Эта статья доступна на английском языке – Moment of Inertia.

    Источник: https://www.poznavayka.org/fizika/moment-inertsii/

    Biz-books
    Добавить комментарий