Найти изменение тангенциального ускорения

§ 1.27. Тангенциальное, нормальное и полное ускорения

Найти изменение тангенциального ускорения

  • Когда точка движется произвольно, то ее скорость изменяется как по направлению, так и по модулю. В этом случае очень удобно полное ускорение разложить на составляющие по направлению скорости и перпендикулярно к ней.

Ускорение при неравномерном криволинейном движении

Пусть в некоторый момент времени t точка занимает положение А (рис. 1.83, а) и имеет скорость v1, a спустя малое время Δt точка переместилась в положение В1 приобретя скорость v2.

Рис. 1.83

Разложим вектор изменения скорости Δ на составляющие Δτ и Δn (рис. 1.83, б). Первая составляющая направлена по скорости 1 т. е. по касательной к траектории, проведенной в точке А. Она называется тангенциальной (касательной) составляющей вектора Δ. Составляющая Δn ⊥ 1. Поэтому Δn называется нормальной составляющей приращения скорости Δ. По правилу сложения векторов

Δ = Δτ + Δn.

Разделим почленно это равенство на Δt и перейдем к пределу при стремлении Δt -» 0:

Каждое слагаемое этого равенства есть составляющая ускорения (см. § 1.15). Левая часть равенства (1.27.1) является полным ускорением точки. Первое слагаемое в правой части называется тангенциальным (касательным) ускорением, второе слагаемое — уже знакомое нам нормальное ускорение.

Тангенциальное ускорение направлено по касательной к траектории, так как t ↑↑ . При ускоренном движении точки (модуль скорости возрастает) касательное ускорение имеет то же направление, что и скорость.

При замедленном движении оно направлено противоположно скорости. Тангенциальное ускорение характеризует быстроту изменения модуля скорости.

Нормальное ускорение ап перпендикулярно скорости и характеризует быстроту изменения направления скорости.

Полное ускорение точки равно сумме тангенциального и нормального ускорений:

На рисунке 1.84, а изображен случай ускоренного движения, а на рисунке 1.84, б — замедленного движения точки.

Рис. 1.84

Модуль нормального ускорения

Мы нашли, как направлены тангенциальное и нормальное ускорения. Выражение для модуля нормального ускорения при движении по окружности радиусом r нам известно:

Если движение происходит вдоль произвольной кривой, то под r надо понимать радиус кривизны траектории в данной точке. Выясним, что такое радиус кривизны кривой линии в точке. Выберем на кривой АВ вблизи точки М с обеих сторон от нее еще две точки: К и L (рис. 1.85).

Через три точки К, М и L можно провести единственную окружность.

Если точки К и L приближать к точке М, каждый раз проводя через эти три точки окружность, то мы получим серию окружностей разных радиусов, дуги которых вблизи точки М все меньше и меньше будут отличаться от кривой АВ.

Рис. 1.85

В пределе, когда точки К и L сколь угодно близко подходят к точке М, радиус проходящей через них окружности также стремится к предельному значению. Это предельное значение радиусов окружностей и называется радиусом кривизны кривой АВ в точке М.

Модуль тангенциального и полного ускорений

Модуль тангенциального ускорения равен

где dv — приращение модуля скорости за бесконечно малый интервал времени dt. Модуль полного ускорения а. точки можно найти по теореме Пифагора (см. рис. 1.84, а, б):

Полное ускорение направлено по секущей в сторону вогнутости траектории.

Классификация движений

По значениям, которые принимают нормальное и тангенциальное ускорения, можно классифицировать различные движения точки.

Если аn = 0, то при любых значениях скорости движение точки происходит по прямой линии. Эту прямую можно рассматривать как окружность бесконечно большого радиуса (г —> ∞).

Если аt = 0 и аn = 0, но скорость отлична от нуля, то движение по прямой будет равномерным, так как не меняется модуль скорости.

В случае аn ≠ 0 движение точки криволинейное, так как меняется направление скорости. Когда аn ≠ 0, аt = 0, то при движении по кривой линии модуль скорости точки не изменяется — точка движется равномерно.

Если аt = 0, аn = const, то точка совершает равномерное движение по окружности.

И наконец, когда оба ускорения 1 и n отличны от нуля, то точка движется неравномерно по криволинейной траектории.

В заключение заметим, что если точка движется равномерно по криволинейной траектории, то можно вычислить путь, пройденный точкой, по формуле s = vt.

При произвольном движении вектор ускорения направлен внутрь траектории. Тангенциальная составляющая этого вектора характеризует изменение скорости по модулю, а нормальная составляющая — по направлению.

Источник: http://tepka.ru/fizika_10/36.html

Тангенциальное ускорение — определение, формула и измерение

Найти изменение тангенциального ускорения

Первая лекция для студентов, изучающих кинематику, начинается с рассмотрения тангенциального ускорения, характеризуемого произвольным движением. По сути, рассматривается неравномерное прямолинейное движение общего вида.

Кинематика входит в механику и изучает перемещение объектов без учёта сил, вызвавших их движение. Под перемещением понимают изменение положения в пространстве по отношению к другому физическому телу, которое и считается точкой отсчёта.

Если изменение положения связать с координатами и временем, то образуется система отсчёта. С её помощью можно определить положение объекта в любой момент.

В кинематике любые процессы принято рассматривать, приняв тело за материальную точку. То есть его размерами и формой пренебрегают. При изменении за какой-то промежуток времени точка проходит путь, описывающийся линией — траекторией.

Она является скалярной величиной, а само перемещение — векторной. Движение материальной точки может происходить с разной скоростью и ускорением. Быстроту движения разделяют на среднюю и мгновенную.

Вторая определяется как предел, к которому стремится скорость на бесконечно малом временном интервале: v = Δs / Δt (Δt → 0).

Перемещение может происходить с ускорением. Это физическая величина, определяющая изменение быстроты перемещения. Иными словами, показывает изменение положения за единицу времени. Измеряется она в метрах на секунду в квадрате. В кинематике существует три вида ускорения:

  • Тангенциальное — направленное вдоль касательного пути точки в определённый момент. Из-за происхождения слова его часто называют касательным.
  • Нормальное — совпадающее с нормалью траектории изменения положения.
  • Полное — определяющееся суммой тангенциального и нормального ускорений.

Но также используется понятие «вектор среднего ускорения тела». Определяется он как приращение вектора скорости за промежуток времени: aср = Δv / Δt. При этом он будет совпадать по направлению с вектором скорости, то есть направлен в сторону вогнутости траектории.

Угловое ускорение

Если имеется какая-то точка, находящаяся на вращающемся теле, то скорость её направлена по касательной. Когда движение равномерное, то линейная скорость связана с угловой равенством: v = w * r. А вот ускорение тела будет направлено по радиусу к центру окружности, причём модуль вычисляется как a = v / r либо если это точка на вращающемся теле: a = w2 * r.

В момент, когда тело поворачивается за небольшой промежуток времени на угол дельта фи, угловую скорость можно связать с условием поворота через формулу: w = Δ φ / Δ t. Если тело вращается равномерно, то промежуток времени может быть любым. В ином случае эта величина будет равна мгновенной угловой скорости.

Можно представить, что материальная точка движется неравномерно, то есть изменяется угловая скорость тела. Линейная скорость не будет представлять собой постоянную величину, в отличие от равномерного перемещения.

Угол поворота равняется: w = v / r. Так как скорость не может быть константой, то отсюда следует, что и угловая скорость не будет постоянной величиной. Её изменение обозначают Δw.

Она равняется разности конечной угловой скорости и начальной: Δw = wк — wн.

Изменение угловой скорости можно разделить на промежуток времени, за который оно поменяло значение: (wк — wн) / Δt. По сути, получается ускорение. Обозначается характеристика буквой эпсилон E и называется угловым ускорением.

Измеряется характеристика в радианах на секунду в квадрате. Её смысл заключается в описании физической величины через отношение изменения угловой скорости тела за небольшой промежуток времени к длительности этого промежутка.

Пусть есть дуга окружности с центром. В начальный момент времени у тела есть скорость, направленная по касательной к траектории v0. Через некоторое время точка переместится по окружности на небольшое расстояние. Так как движение неравномерное, модуль скорости изменится v ≠ v0. Для того чтобы найти ускорение тела, нужно воспользоваться следующей формулой: a = Δv / Δt, при этом Δv = v — v0.

Чтобы найти эту разность, нужно воспользоваться правилом треугольника. Для этого следует перенести вектор V0 к V и соединить их линией. Радиус от центра к материальной точке можно обозначить R.

Дельта V можно представить, как сумму взаимно перпендикулярных векторов. Один из них будет направленных тангенциально к радиусу, в физике обозначают его Δ Vτ, а другой радиально Δ Vr.

В итоге: ΔV = Δ Vτ + Δ Vr.

Вывод формулы

Для доказательства формулы необходимо рассмотреть плоскую систему координат, в которой материальная точка изменяет своё положение по криволинейной траектории. В начальный момент её скорость будет равняться V0. Через некоторое время она изменится и станет V.

На графике в плоском измерении это можно представить в виде синусоиды. В определённый момент времени скорость превышает начальную: V > V0.

На схеме вектор нулевой скорости направлен из точки t0 вверх по касательной, а вектор V с нижней точки синусоиды параллельно оси ординаты.

Исходя из графика, можно сделать два вывода:

  • Через промежуток времени Δt скорость изменяется как по направлению, так и по модулю: Δt = t — t0.
  • Вектор изменения скорости, определяемый по правилу треугольника, будет равняться разности существующей скорости на данный момент и начальной: Δv = v — v0.

Для того чтобы построить вектор изменения Δv, нужно из конечной точки отрезка V0 провести линию к рассматриваемой точки, характеризующейся во времени скоростью V. Вершины полученного треугольника можно обозначить буквами ABD.

Из верхнего угла B на сторону AD можно опустить медиану. Точка пересечения со стороной пусть будет C. Получается, что вектор Δv можно разложить на две составляющие — отрезки BC и СD.

Причём медиана равняется Δvn, а изменение по оси ординаты Δvt.

Для разложения необходимо использовать вектор АС, длина которого совпадает с Vo по модулю: |AC| = |AB| = V0. Так как Δvn — результирующий вектор, то его можно вычислить через сумму: Δv = Δvn + Δvt.

Причём первый член в равенстве характеризует изменение быстроты за промежуток времени по направлению, а второй — по модулю. Исходя из того, что t не равняется нулю, на него можно разделить левую и правую часть равенства: Δv / Δt = Δvn / Δt + Δvt / Δt.

Если дельта-времени стремится к нулю, то формулу можно переписать в виде: lim Δv / Δt = lim Δvn / Δt + lim Δvt / Δt.

Учитывая связь между ускорениями и то, что полное значение состоит из суммы изменения быстроты движения по модулю и направлению, можно утверждать о верности формулы: a = at + an. Так как направление векторов ускорения и скорости всегда совпадают, то последний можно представить, как параметр, состоящий из двух взаимно перпендикулярных компонент:

  • at — тангенциальной составляющей, совпадающей с отрезком V;
  • an — перпендикулярным по отношению расположения V вектором.

Используя теорему Пифагора, можно сказать, что модуль полного ускорения равняется корню квадратному из суммы квадратов тангенциального и нормального ускорения: a = √at 2 + an 2.

Решение простых примеров

В школьном курсе на уроках физики учащимся для закрепления материала предлагается решить определённый тип задач, используя определение тангенциального ускорения. Это типовые примеры, объясняющие суть характеристики и её применение в реальной практике. Вот некоторые из них.

  1. Вычислить все ускорения точки, лежащей на окружности, через десять секунд после воздействия на диск вращателя. При этом учесть, что радиус окружности составит 20 см, а угол между валом и радиус вектором тела соответствует закону: j =3-t+0.2t3. Для решения примера необходимо использовать формулы для нахождения угловой скорости и ускорения. Подставив заданные значения, можно получить: w = d φ / dt = -1 + 0,2 * 3t2 и e = dw / dt = 0,6 * 2t. Применив формулу связи, легко найти ускорение: at = R * E * (0,6 * 2t) = 1,2 * Rt = 24 м2/с. Подставив в формулу нормального ускорения значения, можно вычислить и его an = V2 / R = R * (0,6 * 102 — 1)2 / 0,2 = 696 м/с2. Отсюда полное ускорение будет равняться: a = √ 242 + 6962 = 697 м/с2.
  2. Материальное тело перемещается по окружности, имеющей радиус 20 см. При этом тангенциальное ускорение равняется 5 см на секунду в квадрате. Определить, сколько понадобится времени, чтобы ускорения сравнялись и нормальное стало больше тангенциального в два раза. Исходя из условия, можно утверждать, что движение является равноускоренным. Поэтому можно применить формулы: an = V2 / t; at = V / t. Отсюда: t = V / at, а V = √an * R. Подставив второе выражение в первое, получится: t = (√an * R) / at. При равенстве ускорений an = at, будет верной запись: t = √R / at = √20 / 5 = 2 с. Для второго случая an = 2at, поэтому: t = (√2 * 20) / 5 = 2,8 c.

Но не всегда решаемые задания можно решить, обойдясь одной формулой. При этом значения тех или иных величин могут быть довольно сложными для проведения вычислений. В таких случаях есть резон использовать так называемые онлайн-калькуляторы.

Это специализированные сайты, выполняющие подсчёт в автоматическом режиме. Из таких сервисов можно выделить: сalc, widgety, webmath.

Указанные интернет-решители работают на русском языке, так что вопросов, как с их помощью выполнять расчёты, возникнуть не должно.

Сложная задача

Пусть имеется физическое тело, которое движется, замедляясь по окружности радиусом R так, что в каждый момент времени её тангенциальное и нормальное убыстрение равны друг другу по модулю. Необходимо найти зависимость скорости и полного ускорения от времени и пройденного пути. В начальный момент скорость равняется V0.

Согласно условию, тангенциальное ускорение будет отрицательным, так как точка движется, замедляясь. Для понимания задачи можно изобразить схему движения. Для этого необходимо нарисовать окружность и указать на ней вектор начальной скорости, тангенциального и нормального ускорения. Изобразить вектор полного ускорения как сумму векторов.

Нормальное ускорение можно выразить через скорость и радиус: an = V2 / R. Затем необходимо записать формулу для тангенциального ускорения: at = dV / dt. Так как они равны, то справедливым будет равенство: V2 / R = dV / dt.

Анализируя уравнение, можно сделать вывод, что так как скорость и радиус положительный, то слева будет стоять величина со знаком плюс.

Но, с другой стороны, со временем скорость убывает, поэтому с правой стороны нужно поставить знак минус: V2 / R = — dV / dt.

Полученное уравнение является дифференциальным и показывает зависимость скорости от времени. Равенство можно преобразовать, умножив на отношение dt / V2.

В итоге должно получиться выражение: dV / V2 = — dt / R. Это уравнение можно проинтегрировать. При этом пределами интеграла с левой стороны будет V0 и V, а с правой — 0 и t.

Получился обыкновенный степенной интеграл, который будет равняться: 1 / V = dt / R.

Подставив пределы, можно получить равенство: (1 / V) — (1 / V0) = t / R. Из полученной формулы следует выразить скорость: V = (V0 * R) / (R + V0 * t). Поделив числитель и знаменатель на радиус, ответ примет вид: V (t) = V0 / (1 + (V0 * t / R)).

Теперь можно найти тангенциальное убыстрение, так как оно представляет производную от скорости. После взятия производной получится: at = dV / dt = — V02 / R (1 + V0 * t / R)2 = — V2 / R.

Отсюда можно написать, что модуль полного ускорения будет равняться: a = √2 *|ar| = (√2 * V2) / R. Осталось найти путь. Он совпадает с длиной дуг и равняется интегралу модуля скорости от времени.

После решения должно получиться равенство: S (t) = R * ln (1 + V0 * t / R). Задача решена.

Источник: https://nauka.club/fizika/tangentsialno%D0%B5-uskoreni%D0%B5.html

Тангенциальное ускорение

Найти изменение тангенциального ускорения

3 .Тангенциальное ускорение– векторная физическая величина,характеризующая изменение скороститела по абсолютному значению, численноравная первой производной от модуляскорости по времени и направленная покасательной к траектории в ту же сторону,что и скорость, если скорость возрастает,и противоположно скорости, если онаубывает.

4 .Нормальное ускорение–векторная физическая величина,характеризующая изменение направленияскорости, численно равная отношениюквадрата скорости к радиусу кривизнытраектории, направленная вдоль радиусакривизны к центру кривизны:

.

Т ак как векторыинаправленыпод прямым углом, то (рис. 1. 17)

, (1.2.9)

5.Угловое ускорение– векторнаяфизическая величина, характеризующаяизменение угловой скорости, численноравная первой производной угловойскорости по времени и направленнаявдоль оси вращения в ту же сторону, чтои угловая скорость, если скоростьвозрастает, и противоположно ей, еслиона убывает.

Формулу вставить (1.2.10)

СИ:

Полное ускорение

(линейное)

Поскольку мы ограничиваемсярассмотрением вращения вокруг неподвижнойоси, угловое ускорение не делится насоставляющие подобно линейному.

Угловое ускорение

Связь между угловыми характеристиками

вращающегося тела и линейными

характеристиками движения егоотдельных точек

Р

СИ:

ассмотрим одну из точек вращающегосятела, которая находится от оси вращенияна расстоянииR,то есть движется по окружности радиусаR(рис. 1.18).

По истечении времениточка А переместится в положение А1,пройдя расстояние ,радиус-вектор повернется на угол.Центральный угол, опирающийся на дугу,в радианной мере равен отношению длиныдуги к радиусу кривизны этой дуги:

.

Этоостается справедливым и для бесконечномалого интервала времени:.Далее, используя определения, легкополучить:

; (1.2.11)

Связь между линейными и угловыми характеристиками

; (1.2.12)

. (1.2.13)

1.1.2.Классификациядвижений. Кинематические законы

Кинематическимизаконами будем называть законы, выражающиеизменение кинематических характеристикдвижения с течением времени:

-закон пути или;

-закон скорости или;

-закон ускорения или.

Н

Ускорение

Ускорение гоночного автомобиля на старте 4-5 м/с2

Ускорение реактивного самолета при посадке

6-8 м/c2

Ускорение свободного падения вблизи поверхности Солнца 274 м/c2

Ускорение снаряда в стволе орудия 105 м/c2

аиболее информативной характеристикойдвижения является ускорение, поэтомуоно используется в качестве основаниядля классификации движений.

Нормальноеускорение несет информацию об изменениинаправления скорости, то есть обособенностях траектории движения:

-движение прямолинейное (направлениескорости не меняется);

-движение криволинейное.

Тангенциальноеускорение определяет характер изменениямодуля скорости с течением времени. Поэтому признаку принято выделять следующиевиды движения:

— равномерное движение (абсолютноезначение скорости не меняется);

-ускоренное движение

-неравномер- (скорость возрастает)

ноедвиже- -замедленноедвиже

ние ние (скорость убывает).

Наиболеепростыми частными случаями неравномерногодвижения являются движения, при которых

-тангенциальное ускорение не зависитот времени, остается постоянным во времядвижения – равнопеременное движение(равноускоренное или равнозамедленное);

или- тангенциальное ускорение меняется стечением времени по закону синуса иликосинуса – гармоническое колебательноедвижение (например, грузик на пружине).

Аналогично для вращательного движения:

-равномерное вращение;

-неравномерное вращение

Типыдвижения записать более компактно

-равноускоренное

вращение

— замедлен-

ное вращение;

-равнопе-

ременное вращение

Крутильные колебания (например, трифилярный подвес – диск, подвешенный на трех упругих нитях, и совершающий колебания в горизонтальной плоскости).

Еслиизвестен один из кинематических законовв аналитической форме, то можно найтидругие, при этом возможны два типа задач:

Iтип – по заданному закону пути илинайти закон скоростиилиизакон ускоренияили;

IIтип – по заданному закону ускорения илинайти закон скоростиилиизакон путиили.

Эти задачи являются взаимно обратнымии решаются на основе применения обратныхматематических операций. Первый типзадач решается на основе определений,то есть путем применения операциидифференцирования.

— задано

— ?

-?.

Второйтип задач решается путем интегрирования.Если скорость есть первая производнаяот пути по времени, то путь по отношениюк скорости можно найти как первообразную.Аналогично: ускорение есть производнаяот скорости по времени, тогда скоростьпо отношению к ускорению – первообразная.Математически эти действия выглядяттак:

-приращение пути за бесконечно малыйпромежуток времени .Для конечного интервала отдоинтегрируем:.По правилам интегрирования.Чтобы взять интеграл в правой части,нужно знать вид закона скорости, то есть.Окончательно, для нахождения положениятела на траектории в произвольный моментвремени получаем:

,где (1.2.14)

-изменение скорости за бесконечно малыйпромежуток времени .

Дляконечного интервала от до:

Источник: https://studfile.net/preview/2792004/page:2/

Ускорение. Нормальная и тангенциальная составляющие ускорения. урок. Физика 11 Класс

Найти изменение тангенциального ускорения

Механическое движение по характеру подразделяется на поступательное, вращательное и колебательное; по виду траектории – прямолинейное и криволинейное. Также механическое движение можно подразделять по характеру изменения скорости.

Физическая величина, которая определяет быстроту изменения скорости, называется ускорением.

Математически ускорение определяется отношением изменения скорости к промежутку времени, за которое оно произошло (производная от скорости по времени): , где  – ускорение;  – изменение скорости;  – промежуток времени, за которое произошло изменение скорости;  – производная скорости по времени.

Так как скорость – величина векторная, то она может меняться по модулю и направлению, поэтому ускорение имеет две естественные составляющие: тангенциальную (параллельную вектору скорости) и нормальную (перпендикулярную вектору скорости).

, где  – полное ускорение;  – тангенциальная составляющая ускорения;  – нормальная составляющая ускорения (см. рис. 1).

Рис. 1. Тангенциальная и нормальная составляющие полного ускорения

Тангенциальная составляющая ускорения характеризует быстроту изменения величины (модуля) скорости. Тангенциальное ускорение всегда коллинеарно скорости.

1) Если тангенциальная составляющая ускорения сонаправлена со скоростью, то движение будет ускоренное (см. рис. 2).

Рис. 2. Тангенциальная составляющая ускорения сонаправлена со скоростью

2) Если тангенциальная составляющая ускорения противонаправлена скорости, то движение будет замедленным (см. рис. 3).

Рис. 3. Тангенциальная составляющая ускорения противонаправлена скорости

Нормальная составляющая ускорения характеризует быстроту изменения скорости по направлению. Нормальное ускорение всегда перпендикулярно скорости и направлено к центру по радиусу траектории, по которой движется тело (см. рис. 4).

Рис. 4. Направление нормального ускорения

Величина нормального ускорения связана с радиусом траектории и со скоростью движения следующим соотношением:

При прямолинейном движении тело имеет только тангенциальное ускорение. Нормальное ускорение отсутствует, так как скорость тела по направлению остаётся неизменной (см. рис. 5).

Рис. 5. Прямолинейное движение

При криволинейном движении, как правило, тело имеет тангенциальную и нормальную составляющую ускорения (см. рис. 6).

Рис. 6. Криволинейное движение

Рассмотрим движение тела, брошенного под углом к горизонту (см. рис. 7). Найдём составляющие ускорения в тот момент, когда скорость тела направлена под углом  к горизонту.

Рис. 7. Траектория движения тела

Касательная к траектории в точке A – это направление скорости . Ускорение тела, брошенного под углом к горизонту, всегда равно ускорению свободного падения: .

Спроецируем данное ускорение на две взаимно перпендикулярные оси, одна из которых перпендикулярна скорости, другая направлена вдоль скорости.

Рис. 8. Проекции ускорения

На рисунке видно, что тангенциальная составляющая ускорения направлена против скорости, то есть скорость тела в данный момент уменьшается (см. рис. 8). Нормальная составляющая ускорения направлена перпендикулярно скорости, следовательно, скорость в следующий момент наклонится в сторону .

Величины составляющих ускорения находим геометрически.

Рис. 9. Геометрическое определение величины составляющих ускорения

Угол A в треугольнике разложения на составляющие (треугольник выделен жёлтым на рисунке) имеет взаимно перпендикулярные стороны с углом  (см. рис. 9), поэтому .

Следовательно,  тангенциальная составляющая равна: .

Нормальная составляющая ускорения равна: .

Обод радиусом 1 метр катится по горизонтальной поверхности со скоростью 10 м/с. Найти радиус траектории точки поверхности обода при прохождении наивысшего положения.

Дано: ; .

Найти: .

Решение

Рис. 10. Иллюстрация к задаче

На рисунке изображён обод, который катится по горизонтальной поверхности со скоростью  (см. рис. 10). Точка A – точка касания обода горизонтальной поверхности, точкаB – наивысшая точка в начальный момент времени. Точка A будет перемещаться по траектории, которая обозначена жёлтым цветом, она называется циклоидой. Эта точка вновь коснётся поверхности, пройдя путь, равный длине траектории: .

Скорость точки A относительно горизонтальной поверхности при движении обода без проскальзывания равна нулю.

Это объясняется тем, что она движется вместе с ободом по горизонтали со скоростью  и относительно центра обода совершает движение по окружности со скоростью .

В точке A эти скорости будут противонаправлены: . Следовательно, скорость движения по окружности и скорость движения центра обода равны: .

Скорости точек в верхней части обода равны: . Эта скорость будет направлена по горизонтали в сторону движения обода.

С центром обода у всех точек, лежащих на её поверхности, связано нормальное ускорение, так как оно направлено перпендикулярно скорости движения точки по окружности в любой момент времени.

Ускорение остаётся неизменным для всех точек поверхности обода, так как при переходе к системе отсчёта, связанной с Землёй, центр обода движется  равномерно: .

Тогда для точки  получается следующее соотношение: , где r – искомый радиус.

В этой задаче заданное значение начальной скорости было лишним. Избыточные данные часто включают в задания ЕГЭ по физике.

Ответ: .

После удара футбольный мяч за 2 с пролетел 40 м и упал на землю. Чему равен радиус траектории мяча в верхней точке траектории?

Дано: ; ; .

Найти: .

Решение

Рис. 11. Иллюстрация к задаче

На рисунке изображена траектория полёта мяча (см. рис. 11). Точка A – верхняя точка траектории, скорость мяча в которой . Ускорение g в верхней точке направлено вниз. Очевидно, что это нормальная составляющая ускорения, так как она направлена перпендикулярно скорости: .

Скорость в точке A – это горизонтальная составляющая скорости, которая в процессе всего движения остаётся неизменной. Поэтому скорость в точке A равна отношению всего пути, пройденного по горизонтали, ко времени: .

Следовательно, радиус траектории в верхней точке равен: .

Ответ: .

Сведения об ускорении необходимы для того, чтобы найти закон изменения скорости от времени. Например, зависимость скорости от времени находится как неопределённый интеграл от ускорения по времени: , где C – постоянная интегрирования.

При равноускоренном движении  постоянное число выносится за знак интеграла, следовательно, получается закон изменения скорости: .

При  скорость равна начальной скорости, следовательно, C – это начальная скорость: . Отсюда получается закон изменения скорости при равнопеременном прямолинейном движении: .

Домашнее задание

  1. Вопросы в конце параграфа 13 (стр. 46); — Касьянов В.А. Физика. 10 кл. (см. список рекомендованной литературы) (Источник)
  2. Камень брошен со скоростью 20 м/c под углом  к горизонту. Определить радиус кривизны R его траектории: в верхней точке, в момент падения на Землю.
  3. Тело брошено со скоростью  под углом  к горизонту. Найти нормальное  и тангенциальное  ускорения тела через время  после начала движения.

Список рекомендованной литературы

  1. Касьянов В.А. Физика. 10 кл.: Учеб. для общеобразоват. учреждений. – М.: Дрофа, 2000.
  2. Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. Физика 10. – М.: Просвещение, 2008.
  3. А. П. Рымкевич. Физика. Задачник 10-11. – М.: Дрофа, 2006.
  4. Орлов В.А., Демидова М.Ю., Никифоров Г.Г., Ханнанов Н.К. Оптимальный банк заданий для подготовки к ЕГЭ. Единый государственный экзамен 2015. Физика. Учебное пособие. – М.: Интеллект-Центр, 2015.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал Distphysics.blogspot.com (Источник).
  2. Интернет-портал Gym1belovo.smartlearn.ru (Источник).
  3. Интернет-портал Studopedia.info (Источник).

Источник: https://interneturok.ru/lesson/physics/11-klass/podgotovka-k-ege/uskorenie-normalnaya-i-tangentsialnaya-sostavlyayuschie-uskoreniya

Тангенциальное и нормальное ускорения

Найти изменение тангенциального ускорения

Тангенциальное(касательное) ускорение-это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Направление вектора тангенциального ускорения a лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение-это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела.

Векторперпендикулярен линейной скорости движения, направлен по радиусу кривизны траектории.

Формула скорости при равноускоренном движении

Поступательное и вращательное движение твердого тела.

Поступательное движение— движение, при котором все точки тела движутся по одинаковым траекториям.
Поступательное движение бывает двух типов: равномерное и неравномерное.

Вращательное движение – это движение тела вокруг некоторой оси. При таком движении все точки тела совершают движение по окружностям, центром которых является эта ось.

Угловая скорость. Угловое ускорение.

Угловая скорость — векторная величина, являющаяся псевдовектором (аксиальным вектором) и характеризующая скорость вращения материальной точки вокруг центра вращения. Вектор угловой скорости по величине равен углу поворота точки вокруг центра вращения за единицу времени:

Угловое ускорение — псевдовекторная физическая величина, равная первой производной от псевдовектора угловой скорости по времени

Угловое ускорение характеризует интенсивность изменения модуля и направления угловой скорости при движении твердого тела

Связь линейной скорости с угловой и тангенциального ускорения с угловым.

Отдельные точки вращающегося тела имеют различные линейные скорости . Скорость каждой точки, будучи направлена по касательной к соответствующей окружности, непрерывно изменяет свое направление.

Величина скорости определяется скоростью вращения тела и расстоянием R рассматриваемой точки от оси вращения. Пусть за малый промежуток времени тело повернулось на угол (рис.2.4).

Точка, находящаяся на расстоянии R от оси проходит при этом путь, равный

Линейная скорость точки по определению.

Тангенциальное ускорение

Воспользовавшись тем же отношением получаем

1.4

Первый закон Ньютона (или закон инерции)

Существуют такие системы отсчета, относительно которых изолированные поступательно движущиеся тела сохраняют свою скорость неизменной по модулю и направлению.

Инерциальной системой отсчёта является такая система отсчёта, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется прямолинейно и равномерно (т.е. с постоянной скоростью).

В при­ро­де су­ще­ству­ют че­ты­ре вида вза­и­мо­дей­ствия

1. Гра­ви­та­ци­он­ное (сила тя­го­те­ния) – это вза­и­мо­дей­ствие между те­ла­ми, ко­то­рые об­ла­да­ют мас­сой.

2. Элек­тро­маг­нит­ное- спра­вед­ли­во для тел, об­ла­да­ю­щих элек­три­че­ским за­ря­дом, от­вет­ствен­но за такие ме­ха­ни­че­ские силы, как сила тре­ния и сила упру­го­сти.

3.Силь­ное- вза­и­мо­дей­ствие ко­рот­ко­дей­ству­ю­щее, то есть дей­ству­ет на рас­сто­я­нии по­ряд­ка раз­ме­ра ядра.

4. Сла­бое. Такое вза­и­мо­дей­ствие от­вет­ствен­но за неко­то­рые виды вза­и­мо­дей­ствия среди эле­мен­тар­ных ча­стиц, за неко­то­рые виды β-рас­па­да и за дру­гие про­цес­сы, про­ис­хо­дя­щие внут­ри атома, атом­но­го ядра.

Масса– является количественной характеристикой инертных свойств тела. Она показывает, как тело реагирует на внешнее воздействие.

Сила – является количественной мерой действия одного тела на другое.

Второй закон Ньютона.

Сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение: F=ma

Измеряется в

Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела(или количеством движения). Импульс тела – векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду (кг·м/с).

Выражение второго закона Ньютона через изменение импульса тела

Равномерное движение– это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия.

Равноускоренное движение — движение, при котором ускорение постоянно по модулю и направлению.

1.5



Источник: https://infopedia.su/7xd1f4.html

Ускорение

Найти изменение тангенциального ускорения

Скачать все статьи раздела КИНЕМАТИКА

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно.Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится.

Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление».

Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

Среднее ускорение

Среднее ускорение> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где – вектор ускорения.

Направление вектора ускорения совпадает с направлением изменения скорости Δ = — 0(здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость 0. В момент времени t2 тело имеет скорость . Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = — 0. Тогда определить ускорение можно так:

Рис. 1.8. Среднее ускорение.

В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с2, то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Мгновенное ускорение

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями аХ, aY, aZ).

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то естьv2 > v1а направление вектора ускорения совпадает с вектором скорости 2.

Если скорость тела по модулю уменьшается, то есть v2 < v1то направление вектора ускорения противоположно направлению вектора скорости 2. Иначе говоря, в данном случае происходит замедление движения, при этом ускорение будет отрицательным (а < 0). На рис. 1.9 показано направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

Тангенциальное ускорение

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела.

То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n.

Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Направление полного ускорения также определяется правилом сложения векторов:

= τ + n

Источник: http://www.av-physics.narod.ru/mechanics/acceleration.htm

Ускорение.Тангенциальная и нормальная составляющая ускорения. Кинематика вращательного движения

Найти изменение тангенциального ускорения

§4 Ускорение.

Тангенциальная и нормальная  составляющие ускорения

   Ускорение – векторная величина, характеризующая быстроту изменения скорости движущегося тела по величине и направлению.

   Средним ускорением точки в интервале времени Δt называется вектор аср, равный отношению приращения вектора скорости ΔV к промежутку Δt.

   Ускорением (мгновенным ускорением) точки называется векторная величина a, равная первой производной скорости v по времени (или вторая производная радиус — вектора по времени):

  Ускорение точки в момент времени t равно пределу среднего ускорения  при

   В декартовой системе координат вектор  можно записать через его координаты:

, где

Модуль вектора ускорения

Вектор  можно представить в виде суммы двух составляющих:

— тангенциальная составляющая ускорения направлена по касательной к траектории точки и равна

где вектор  – единичный вектор касательной, проведенной в точке траектории и направлении скорости

Векторы  и  сонаправлены при равноускоренном движении;  при  т.е. при равнозамедленном движении.

Касательное ускорение  — характеризует быстроту изменения модуля вектора скорости точки (характеризует изменение скорости по величине).

Для равномерного движения:          

-нормальная составляющая ускорения (нормальное ускорение) направлена по нормали к траектории и рассматриваемой точке в сторону к центру кривизны траектории.

Криволинейную траекторию можно представить как совокупность элементарных участков, каждый из которых может рассматриваться как дуга окружности некоторого радиуса R (называемого радиусом кривизны кривой в окружности данной точки траектории)

  Нормальное ускорение характеризует быстроту изменения направления вектора скорости (характеризует изменение скорости по направлению).

Модуль полного ускорения:

Классификация движений зависит от тангенциальных и нормальных составляющих:

1)

2)                 

3)

4)

5)

6)

7)

§5 Кинематика вращательного движения

Поворот тела на некоторый угол φ можно описать с помощью вектора, длина которого равна φ, а направление совпадает с осью вращения и определяется по правилу правого винта (буравчика, правой руки):

Четыре пальца правой руки – по направлению вращения, согнутый большой палец укажет направление вектора .

Направление вектора поворота φ, связывается с направлением вращения правилом правой руки.

Такие векторы называют аксиальными (осевыми) или псевдовекторами, чтобы подчеркнуть их отличие от обычных (иногда называемых полевыми) векторов.

Угловой скоростью называют вектор  который численно равен первой производной от угла поворота  по времени t и направлен вдоль неподвижной оси по правилу правой руки.

Угловая скорость , как и является аксиальным вектором. Аксиальные векторы не имеют определённых точек приложения, они могут откладываться из любой точки оси вращения. Часто их откладывают от неподвижной точки оси вращения, принимаемой одновременно за начало координат системы отчёта. Вращение тела называют равномерным, если .

Скорость  точки в отличие от угловой скорости , тела называют линейной скоростью. Она направлена перпендикулярно как к оси вращения (т.е. к вектору ), так и радиус — вектору  R, проведённому в точку Р из центра окружности О и равна их векторному произведению:

Равномерное вращение можно  характеризировать периодом вращения Т, под которым понимают время, за которое тело делает один оборот, т.е. поворачивается на угол . Тогда  — связь угловой скорости с периодом обращения.

Частота вращения — число оборотов в единицу времени       ;   .

В случае переменного вращательного движения угловая скорость         материальной точки не изменяется как по величине, так и по направлению. Для характеристики быстроты изменения вектора угловой скорости   при неравномерном вращении вокруг неподвижной оси вводится вектор        углового ускорения тела, равный первой производной от его угловой скорости   по времени.

Вектор  так же является аксиальным (или псевдовектором). Векторы  и   сонаправлены при ускоренном вращении () и           противоположно направлены при замедленном вращении.

 ()

Ускорение  произвольной точки Р тела в отличие от углового ускорения  тела называет линейным ускорением.

Для равноускоренного вращательного движения можно записать:

Связь линейных и угловых величин:                        

Источник: http://bog5.in.ua/lection/mechanics_lect/lect2_meh.html

Biz-books
Добавить комментарий