Найти для точек на ободе колеса угловую скорость

Слободянюк А.И. Физика 10/3.6

Найти для точек на ободе колеса угловую скорость

книги

Предыдующая страница

3.6 Плоскопараллельное движение

Движение твердого тела называется плоскопараллельным, если траектории движения всех его точек являются плоскими кривыми, лежащими в параллельных плоскостях.

Плоскопараллельное движение твердого тела можно представить как суперпозицию поступательного движения и вращения вокруг оси, направление которой не изменяется. Наглядными примерами такого движения являются качение колеса, движение книги без отрыва от стола и т.д.

Для описания положения абсолютно твердого тела при плоскопараллельном движении необходимо задать две декартовые координаты какой-либо точки тела [1] и угол его поворота, то есть плоскопараллельное движение обладает тремя степенями свободы.

Выберем внутри тела две точки A, B; зададим координаты xA, yA точки A и угол φ, который образует отрезок AB с направлением оси X.

Три числа xA, yA и φ однозначно определяют положение тела на плоскости, следовательно, являются его координатами.

Зная эти координаты, можно определить положение в пространстве любой другой точки твердого тела путем геометрических построений.

Покажем теперь, как можно найти скорость любой точки твердого тела при плоскопараллельном движении (рис. 36).

Разложим движение на две составляющих — поступательное движение, скорость которого обозначим \(~\vec V\) , и вращение вокруг оси, проходящей через точку A, с угловой скоростью \(~\omega = \frac{\Delta \varphi}{\Delta t}\) . Тогда скорость любой другой точки тела (например, B) является векторной суммой скоростей поступательного и вращательного движений —

\(~\vec V_B = \vec V + \vec V_{BP}\) , (1)

причем вектор скорости вращательного движения направлен перпендикулярно отрезку AB и равен по абсолютной величине VBP = ωr, где r расстояние от точки B до оси вращения.

Рассмотрим катящееся без проскальзывания колесо радиуса R (рис. 37).

Пусть его центр движется со скоростью \(~\vec V\). Найдем скорости некоторых других точек колеса. Для этого представим движение колеса как сумму поступательного движения его центра и вращения вокруг его оси.

Так как движение происходит без проскальзывания, то угловая скорость вращения определяется формулой \(~\omega = \frac{\upsilon}{R}\).

Для точек, находящихся на ободе колеса линейная скорость вращательного движения равна по модулю скорости поступательного движения, так как для них расстояние до оси вращения равно радиусу колеса, поэтому \(~V_{BP} = \omega r = \frac{V}{R} R = V\) . Однако, направление этой скорости различно для разных точек.

Так, для точки A скорость вращательного движения направлена горизонтально, также как и скорость поступательного движения. Поэтому суммарная скорость точки A равна 2V и направлена горизонтально.

Скорость вращательного движения точки B направлена вертикально вверх, поэтому ее полная скорость направлена под углом 45° к горизонту, а ее модуль \(~V_B = V \sqrt{2}\) . Очень интересна точка касания с поверхностью C : скорость ее вращательного движения направлена горизонтально в сторону противоположную скорости поступательного движения, поэтому ее полная скорость равна нулю.

Так как разложение движения на составляющие не является однозначным, можно теперь представить качение колеса как сумму движения точки C и вращения вокруг оси, проходящей через эту точку.

Мы показали, что скорость точки C равна нулю, поэтому появляется возможность рассматривать движение колеса как чистый поворот вокруг точки C. Правда, это возможно в течение только бесконечно малого промежутка времени, потому, что в следующий момент точкой касания будет другая точка колеса.

Множество точек твердого тела, скорости которых в данный момент равны нулю, образуют мгновенную ось вращения тела. Такая ось существует при любом движении твердого тела.

Правда положение этой оси постоянно изменяется, поэтому для вычисления координат точек такое представление движения не дает особых преимуществ. Но для вычисления скоростей точек, рассматривать плоскопараллельное движение как чистый поворот очень удобно.

Легко доказать, что угол поворота тела не зависит от того, относительно какой оси мы его рассматриваем, следовательно, и угловая скорость не зависит от оси. С этой точки зрения, скорость любой точки колеса определяется формулой V = ωr’ , где r’ — расстояние от данной точки до мгновенной оси вращения.

Рассмотренная задача об определении скоростей точек катящегося колеса может быть легко решена, если рассматривать его движение как поворот вокруг точки C (рис.

38): точка A находится на расстоянии 2R от мгновенной оси вращения, поэтому ее скорость равна VA = 2 = 2V; точка B находится на расстоянии \(~R \sqrt{2}\) от оси, ее скорость \(~V \sqrt{2}\).

Направления векторов скоростей также совпадают с полученными ранее.

Таким образом, мы имеем два примерно одинаковых по сложности способа описания движения твердого тела: первый — суперпозиция поступательного и вращательного движений: второй — поворот вокруг мгновенной оси.

Примечания

  1. ↑ С точки зрения кинематического описания выбор этой точки произволен — только следует стремиться к тому, чтобы траектория этой точки была попроще. Далее мы укажем как можно легко найти такую точку.

Следующая страница

Источник: http://www.physbook.ru/index.php/%D0%A1%D0%BB%D0%BE%D0%B1%D0%BE%D0%B4%D1%8F%D0%BD%D1%8E%D0%BA_%D0%90.%D0%98._%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0_10/3.6

Определение скоростей и ускорений точек твердого тела при поступательном и вращательном движениях – решение задачи

Найти для точек на ободе колеса угловую скорость

Приводятся основные законы и формулы, применяемые при решении задач на определение скоростей и ускорений точек твердого тела при вращательном движении вокруг неподвижной оси.

Рассмотрен пример подробного решения задачи. В ней дан механизм, состоящий из колес, рейки и груза, соединенных нитями и зубчатой передачей.

Требуется найти скорости и ускорения точек, принадлежащих звеньям этого механизма.

Рассмотри твердое тело, вращающееся вокруг неподвижной оси z. Сделаем рисунок. Ось вращения направим перпендикулярно плоскости рисунка, на нас. Пусть φ – угол поворота тела вокруг оси, отсчитываемый от некоторого начального положения.

За положительное направление выберем направление против часовой стрелки. Угловая скорость ω равна производной угла поворота по времени t:
.
При , тело вращается против часовой стрелки; при – по часовой.

Вектор угловой скорости направлен перпендикулярно плоскости рисунка. При он направлен на нас; при – от нас.

Угловое ускорение ε равно производной угловой скорости по времени:
.
Вектор углового ускорения также направлен перпендикулярно плоскости рисунка. При он направлен на нас; при – от нас.

Скорость точки при вращательном движении тела вокруг неподвижной оси

Рассмотрим точку A, принадлежащую твердому телу. Опустим из нее перпендикуляр OA на ось вращения. Пусть – расстояние от точки до оси. Траекторией движения точки A является окружность (или дуга) с центром в точке O радиуса .

Абсолютное значение скорости точки A определяется по формуле:
.
Вектор скорости направлен по касательной к траектории (окружности), перпендикулярно отрезку OA. При этом вектор должен производить закручивание в ту же сторону, что и вектор угловой скорости .

Касательное (или тангенциальное) ускорение точки A определяется аналогично скорости:
.
Оно направлено по касательной к окружности, перпендикулярно OA. При этом вектор должен производить закручивание в ту же сторону, что и вектор углового ускорения .

Ускорение точки при вращательном движении тела вокруг неподвижной оси

Нормальное ускорение всегда направлено к центру окружности и имеет абсолютную величину
.

Полное ускорение точки A, или просто ускорение, равно векторной сумме касательного и нормального ускорений:
.
Поскольку векторы и перпендикулярны, то абсолютная величина ускорения точки A определяется по формуле:
.

Поступательное прямолинейное движение

Теперь рассмотрим прямолинейное поступательное движение тела. Направим ось x вдоль его линии движения. Пусть s есть перемещение тела вдоль этой оси относительно некоторого начального положения. Тогда скорость движения всех точек тела равна производной перемещения по времени:
.
При , вектор скорости направлен вдоль оси x. При – противоположно этой оси.

Ускорение точек тела равно производной скорости по времени, или второй производной перемещения по времени:
.
При , вектор ускорения направлен вдоль оси x. При – противоположно.

Соприкосновение тел без проскальзывания

Рассмотрим два тела, находящиеся в зацеплении без проскальзывания. Пусть точка A принадлежит первому телу, а точка B – второму.

И пусть, в рассматриваемый момент времени, положения этих точек совпадают. Тогда, если между телами нет проскальзывания, то скорости этих точек равны:
.

Если каждое из тел вращается вокруг неподвижной оси, то равны соответствующие касательные ускорения:

.

Если одно из тел движется поступательно (пусть это второе тело), то ускорение его точек равно касательному ускорению точки соприкосновения первого тела:

.

Пример решения задачи

Условие задачи

Механизм состоит из ступенчатых колес 1, 2, 3, находящихся в зацеплении и связанных ременной передачей, зубчатой рейки 4 и груза 5, привязанного к концу нити, намотанной на одно из колес.

Радиусы ступеней колес равны соответственно: у колеса 1 – r1 = 2 см, R1 = 4 см, у колеса 2 – r2 = 6 см, R2 = 8 см, у колеса 3 – r3 = 12 см, R3 = 16 см. На ободьях колес расположены точки A, B и C. Задан закон движения груза: s5 = t3 – 6t (см).

Положительное направление для s5 – вниз.

Определить в момент времени t = 2 скорости точек A, C; угловое ускорение колеса 3; ускорение точки B и ускорение рейки 4.

Эта задача – на исследование вращательного движения твердого тела вокруг неподвижной оси. При решении задачи учесть, что проскальзывание в ременной передаче и в точках сцепления колес отсутствует. То есть скорости точек колес, находящихся в зацеплении равны, а скорости точек ремня равны скорости точек, лежащих на ободе колес, связанных ременной передачей.

Дано:
t = 2 с; r1 = 2 см, R1 = 4 см; r2 = 6 см, R2 = 8 см; r3 = 12 см, R3 = 16 см; s5 = t3 – 6t (см).

Решение

Груз 5 совершает поступательное движение. Поэтому скорости (и ускорения) всех его точек равны. В условии задачи задано смещение s груза относительно некоторого начального положения. Дифференцируя по времени t, находим зависимость скорости точек груза от времени:
. Дифференцируя скорость груза по времени, находим зависимость ускорения груза от времени:

.

Находим скорость и ускорение груза в заданный момент времени :
см/с;
см/с2.

Определение угловых скоростей и ускорений колес

Решение задачи

Груз 5 связан нитью с внутренним ободом колеса 3. Поэтому скорости точек внутреннего обода колеса 3 равны скорости груза:
. Отсюда находим угловую скорость колеса 3 для произвольного момента времени:

.

Здесь подразумевается, что и являются функциями от времени t. Дифференцируя по t, находим угловое ускорение колеса 3:
.
Находим значения угловой скорости и углового ускорения в момент времени с. Для этого подставляем найденные значения и при с:
с–1;
с–2.

Рассмотрим колесо 2. Его внутренний обод связан нитью с внешним ободом колеса 3. Поэтому скорости точек на этих ободьях равны:
. Отсюда
. Дифференцируя по времени, находим угловое ускорение колеса 2 в произвольный момент времени:

.

Подставляем значения для с:
с–1;
с–2.

Рассмотрим колесо 1. Его внутренний обод находится в зацеплении с внешним ободом колеса 2. Поэтому скорости точек на этих ободьях равны:
. Отсюда
. Дифференцируя по времени, находим угловое ускорение колеса 1 в произвольный момент времени:

.

Подставляем значения для с:
с–1;
с–2.

Итак, мы нашли:
ω1 = 5.3333 с–1, ω2 = 1.3333 с–1, ω3 = 0.5 с–1, ε1 = 10.6667 с–2, ε2 = 2.6667 с–2, ε3 = 1 с–2.

Определение скоростей точек A и C

Точка A лежит на окружности радиуса R1 с центром в точке O1, расположенной на оси вращения. Поэтому скорость этой точки направлена по касательной к окружности и по абсолютной величине равна
см/с.

Точка C лежит на окружности радиуса R3 с центром O3 на оси вращения. Скорость этой точки:
см/с.

Определение ускорения точки B

Точка B лежит на окружности радиуса R2 с центром O2, расположенном на оси вращения. Касательное (или тангенциальное) ускорение этой точки направлено по касательной к окружности в сторону, на которую указывает угловое ускорение (по часовой стрелке). По абсолютной величине оно равно
см/с2.

Нормальное ускорение всегда направлено к центру окружности. По абсолютной величине оно равно
см/с2.

Полное ускорение равно векторной сумме касательного и нормального ускорений:
. Поскольку касательное ускорение перпендикулярно нормальному, то для абсолютной величины полного ускорения имеем:

см/с2.

Определение ускорения рейки 4

Рейка 4 движется поступательно по направляющим. Она находится в зацеплении с внешним ободом колеса 1. Поэтому ее скорость равна скорости точек внешнего обода колеса 1:
. Дифференцирую по времени, получаем ускорение рейки в произвольный момент времени:

.

Подставляем численные значения для момента времени t = 2 с:
см/с2.

Ответ

см/с;   см/с;   с–2;   см/с2;   см/с2.

Олег Одинцов.     : 25-10-2019

Источник: https://1cov-edu.ru/termeh/kinematika/tela/opredelenie-skorostej-i-uskorenij-pri-vraschatelnom-dvizhenii/

Примеры решения задач. Определить тангенциальное, нормальное и полное ускорение точки окружности диска для момента времени 10 с от начала движения

Найти для точек на ободе колеса угловую скорость

Задача 3.

Определить тангенциальное, нормальное и полное ускорение точки окружности диска для момента времени 10 с от начала движения, если радиус окружности 0.2 м, а угол между осью ОХ и радиус-вектором точки изменяется по закону: j=3–t+0.2t3.

Решение

По формулам и находим угловую скорость и угловое ускорение точки: ω= –1+0.2.3t2 , ε=0.6.2t. Из формулы связи углового и линейного тангенциального ускорения найдем: aτ=R. ε=R.(0.6.2t)=1.2Rt=1.2.0.2.10=24 м/с2.

Нормальное ускорение найдем из формулы , где скорость v=R.ω=R.(–1+0.2.3t2)=R.(0.6t2–1). Подставим численные значения: v=0.2.(0.6.102–1)=11.8 м/с;

Теперь находим полное ускорение: .

Ответ: aτ=24 м/с2; аn=696 м/с2; а=697 м/с2.

31. Автомобиль движется по закруглению шоссе, имеющему радиус кривизны 50 м. Длина пути автомобиля выражается уравнением S=10+10t+0.5t2 (путь – в метрах, время – в секундах). Найти скорость автомобиля, его тангенциальное, нормальное и полное ускорения через 5 с после начала движения.

32. Материальная точка движется по окружности радиуса 80 см по закону S=10t–0.1t3 (путь в метрах, время в секундах). Найти скорость, тангенциальное, нормальное и полное ускорения через 2 с после начала движения.

33. По дуге окружности радиуса 10 м движется точка. В некоторый момент времени нормальное ускорение точки равно 5 м/с2, а вектор полного ускорения образует в этот момент с вектором нормального ускорения угол 600. Найти скорость и тангенциальное ускорение точки.

34. Зависимость пройденного телом пути от времени дается уравнением S=A+Bt+Ct2+Dt3, где С=0.14 м/с2, D=0.01 м/с3. Через сколько времени после начала движения ускорение тела будет равно 1 м/с2? Чему равно среднее ускорение тела за этот промежуток времени?

35. Тело брошено со скоростью 14.7 м/с под углом 300 к горизонту. Найти нормальное и тангенциальное ускорение тела через 1.25 с после начала движения.

36. Тело брошено горизонтально со скоростью 15 м/с. Найти нормальное и касательное ускорение через 1 с после начала движения.

37. Тело брошено со скоростью 10 м/с под углом 450 к горизонту. Найти радиус кривизны траектории тела через 1 с после начала движения.

38. Тело брошено со скоростью v0 под углом a к горизонту. Найти величины v0 и a, если наибольшая высота подъема тела 3 м и радиус кривизны траектории тела в верхней точке траектории 3 м.

39. Колесо, вращаясь равноускоренно, достигло угловой скорости 20 рад/с через 10 оборотов после начала вращения. Найти угловое ускорение колеса.

40. Маховое колесо спустя 1 минуту после начала вращения приобретает скорость, соответствующую частоте 720 об/мин. Найти угловое ускорение колеса и число оборотов колеса за эту минуту. Вращение считать равноускоренным.

41. Вентилятор вращается со скоростью, соответствующей частоте 900 об/мин. После выключения вентилятор, вращаясь равнозамедленно, сделал до остановки 75 оборотов. Сколько времени прошло с момента выключения вентилятора до его остановки?

42. Точка движется по окружности радиусом 10 см с постоянным тангенциальным ускорением. Найти тангенциальное ускорение точки, если к концу пятого оборота после начала движения скорость точки стала 79.2 см/с.

43. Точка движется по окружности с постоянным тангенциальным ускорением. Найти нормальное ускорение точки через 20 с после начала движения, если к концу пятого оборота после начала движения линейная скорость точки равна 10 см/с.

44. Колесо радиусом 10 см вращается с постоянным угловым ускорением 3.14 рад/с2. Найти для точек на ободе колеса к концу первой секунды после начала движения угловую скорость; линейную скорость; тангенциальное ускорение; нормальное ускорение; полное ускорение.

45. Точка движется по окружности радиусом 2 см. Зависимость пути от времени дается уравнением S=0.1t3 (путь – в метрах, время – в секундах). Найти нормальное и тангенциальное ускорения точки в момент, когда линейная скорость точки равна 0.3 м/с.

46. Колесо вращается с постоянным угловым ускорением 2 рад/с2. Через 0.5 с после начала движения полное ускорение колеса стало равно 13.6 см/с2. Найти радиус колеса.

47. Колесо вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением j=A+Bt+Ct2+Dt3, где B=1 рад/с, С=1 рад/с2, D=1 рад/с3. Найти радиус колеса, если известно, что к концу второй секунды движения нормальное ускорение точек, лежащих на ободе колеса, равно 3.46 м/с2.

48. Маховое колесо, вращающееся с частотой 240 об/мин, останавливается в течение 30 с. Найти число оборотов, сделанных колесом до полной остановки.

49. На цилиндр, который может вращаться около горизонтальной оси, намотана нить, к концу которой привязан грузик. Двигаясь равноускоренно, грузик за 3 с опустился на 1.5 м. Определить угловое ускорение цилиндра, если его радиус равен 4 см.

50. Тело вращалось равноускоренно с начальной частотой 40 об/мин. После того, как совершилось 20 оборотов телом, частота увеличилась до 120 об/мин. Найти угловое ускорение и время, в течение которого изменялась частота.

51. Шкив радиусом 20 см приводится во вращение грузом, подвешенным на нити, постепенно сматывающейся со шкива. В начальный момент груз был неподвижен, а затем стал опускаться с ускорением 20 см/с2. Определить угловую скорость шкива в тот момент, когда груз пройдет путь 1 м.

52. Колесо, вращаясь равнозамедленно, при торможении уменьшило свою частоту за 1 минуту от 300 об/мин до 180 об/мин. Найти угловое ускорение колеса и число оборотов, сделанных им за это время. Через какое время колесо остановится?

53. Вал вращается со скоростью, соответствующей частоте 180 об/мин. С некоторого момента вал тормозится и вращается равнозамедленно с угловым ускорением, численно равным 3 рад/с2. Через сколько времени вал остановится? Сколько оборотов он сделает до остановки?

54. Точка движется по окружности радиусом 20 см с постоянным тангенциальным ускорением 5 см/с2. Через сколько времени после начала движения нормальное ускорение точки будет равно тангенциальному?

55. Найти угловое ускорение колеса, если известно, что через 2 с после начала равноускоренного движения вектор полного ускорения точки, лежащей на ободе, составляет угол 600 с направлением линейной скорости этой точки.

56. Колесо радиусом 0.1 м вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением j=A+Bt2+Ct3, где B=2 рад/с2, С=1 рад/с3. Для точек, лежащих на ободе колеса, найти через 2 с после начала движения: угловую скорость; линейную скорость; угловое ускорение; тангенциальное ускорение; нормальное ускорение; полное ускорение.

57. Колесо радиусом 5 см вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением j=A+Bt+Ct2+Dt3, где D=1 рад/с3. Найти для точек, лежащих на ободе колеса, изменение тангенциального ускорения за каждую секунду движения.

58. Колесо радиусом 30 см вращается так, что зависимость линейной скорости точек, лежащих на ободе колеса, от времени движения дается уравнением: v=3t+t2 (скорость – в м/с, время – в секундах). Найти угол, составляемый вектором полного ускорения с радиусом колеса в момент времени 5 с после начала движения.

59. Поезд въезжает на закругленный участок пути с начальной скоростью 54 км/ч и проходит равноускоренно путь 600 м за время 30 с. Радиус закругления 1 км. Найти скорость и полное ускорение поезда в конце этого участка пути.

60. Камень брошен горизонтально со скоростью 10 м/с. Найти нормальное и тангенциальное ускорение камня и радиус кривизны траектории через 3 с после начала движения.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/9_85397_primeri-resheniya-zadach.html

Biz-books
Добавить комментарий