Моделирование экономических процессов. Баева Н.Б.

ЭКОНОМИКО-МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ КАК МЕТОД НАУЧНОГО ПОЗНАНИЯ — Заочные электронные конференции

Моделирование экономических процессов. Баева Н.Б.

ЭКОНОМИКО-МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ КАК МЕТОД НАУЧНОГО ПОЗНАНИЯ

Лыкова Н.П., Николаева А

Лыкова Н.П., Николаева А.

Россия, Самара

ГОУ ВПО «Российский государственный гуманитарный университет». Филиал в г. Самаре

ЭКОНОМИКО-МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ КАК МЕТОД НАУЧНОГО ПОЗНАНИЯ

Моделирование, как метод научного познания, стало применяться еще в глубокой древности и постепенно захватило все новые области научных познаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки.

Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования XX век. В системе экономических наук главенствующее положение занимает экономическая теория: она служит теоретической и методологической основой всего комплекса экономических наук. Применение математических методов в экономике началось именно в теоретико-экономических исследованиях.

Термин экономико-математические методы понимается в свою очередь как обобщающее название комплекса экономических и математических научных дисциплин, объединенных для изучения социально-экономических систем и процессов.

Экономико-математические методы следует понимать как инструмент, а экономико-математические модели — как продукт процесса экономико-математического моделирования.

Под социально-экономической системой понимается сложная вероятностная динамическая система, охватывающая процессы производства, обмена, распределения и потребления материальных и других благ. Она относится к классу кибернетических систем, т. е. систем управляемых.

Основным методом исследования систем является метод моделирования, т. е. способ теоретического анализа и практического действия, направленный на разработку и использование моделей. Метод моделирования основывается на принципе аналогии, т. е. возможности изучения реального объекта не непосредственно, а через рассмотрение подобного ему и более доступного объекта, его модели.

Моделирование представляет собой циклический процесс, т. е. за первым четырехэтапным циклом может последовать второй, третий и т. д. При этом знания об исследуемом объекте расширяются и уточняются, а первоначально построенная модель постепенно совершенствуется. Таким образом, в методологии моделирования заложены большие возможности самосовершенствования.

Проанализировав последовательность и содержание этапов экономико-математического моделирования, можно выделить следующие шесть этапов: постановка экономической проблемы, ее качественный анализ; построение математической модели; математический анализ модели; подготовка исходной информации; численное решение; анализ численных результатов и их применение.

К сожалению, далеко не во всех случаях данные, полученные в результате экономико-математического моделирования, могут использоваться непосредственно как готовые управленческие решения. Они скорее могут быть рассмотрены как «консультирующие» средства. Принятие управленческих решений остается за человеком.

Таким образом, экономико-математическое моделирование является лишь одним из компонентов (пусть очень важным) в человеко-машинных системах планирования и управления экономическими системами. Важнейшим понятием при экономико-математическом моделировании, как и при всяком моделировании, является понятие адекватности модели, т. е.

соответствия модели моделируемому объекту или процессу. Адекватность модели — в какой-то мере условное понятие, так как полного соответствия модели реальному объекту быть не может, что характерно и для экономико-математического моделирования.

При моделировании имеется в виду не просто адекватность, но соответствие по тем свойствам, которые считаются существенными для исследования. Проверка адекватности экономико-математических моделей является весьма серьезной проблемой, тем более что ее осложняет трудность измерения экономических величин.

Однако без такой проверки применение результатов моделирования в управленческих решениях может не только оказаться мало полезным, но и принести существенный вред.

Применение математических методов и моделей в экономике поставило перед экономической наукой ряд важных методологических проблем, связанных с выяснением закономерностей оптимизации общественного производства и его отдельных процессов, вызвало необходимость анализа и обобщения теоретических основ математического моделирования народнохозяйственных процессов.

На всех уровнях управления, во всех отраслях используются методы экономико-математического моделирования. Выделим условно следующие направления их практического применения, по которым получен уже большой экономический эффект.

Первое направление – прогнозирование и перспективное планирование.

Прогнозируются темпы и пропорции развития экономики, на их основе определяются темпы и факторы роста национального дохода, его распределение на потребление и накопление и т.д.

Важным моментом является использование экономико-математических методов не только при составлении планов, но и в деле оперативного руководства по их реализации.

Второе направление – разработка моделей, которые используются как инструмент согласования и оптимизации плановых решений, в частности это межотраслевые и межрегиональные балансы производства и распределения продукции. По экономическому содержанию и характеру информации выделяют балансы стоимостные и натурально-продуктовые, каждый из которых может быть отчетным и плановым.

Третье направление – использование экономико-математических моделей на отраслевом уровне (выполнение расчетов оптимальных планов отрасли, анализ с помощью производственных функций, прогнозирование основных производственных пропорций развития отрасли).

Для решения задачи размещения и специализации предприятия, оптимального прикрепления к поставщикам или потребителям и др.

используются модели оптимизаций двух типов: в одних для заданного объёма производства продукции требуется найти вариант реализации плана с наименьшими затратами», в других требуется определить масштабы производства и структуру продукции с целью получения максимального эффекта.

В продолжение расчетов осуществляется переход от статистических моделей к динамическим и от статистических моделей к динамическим и от моделирования отдельных отраслей к оптимизации многоотраслевых комплексов. Если раньше были попытки создать единую модель отрасли, то теперь наиболее перспективным считается использование комплексов моделей, взаимоувязанных как по вертикали, так и по горизонтали.

Четвертое направление – экономико-математическое моделирование текущего и оперативного планирования промышленных, строительных, транспортных и других объединений, предприятий и фирм. Область практического применения моделей включает также подразделения сельского хозяйства, торговли, связи, здравоохранения, охрану природы и т.д.

В машиностроении используется большое количество разнообразных моделей, наиболее «отлаженными» из которых являются оптимизационные, позволяющие определить производственные программы и наиболее рациональные варианты использования ресурсов, распределить производственную программу во времени и эффективно организовать работу внутризаводского транспорта, существенно улучшить загрузку оборудования и разумно организовать контроль продукции и др.

Пятое направление – территориальное моделирование, начало которому положила разработка отчетных межотраслевых балансов некоторых регионов в конце 50-х годов.

В качестве шестого направления можно выделить экономико-математическое моделирование материально-технического обеспечения, включающее оптимизацию транспортно-экономических связей и уровня запасов.

К седьмому направлению относятся модели функциональных блоков экономической системы: движение населения, подготовка кадров, формирование денежных доходов и спроса на потребительские блага и др.

Особенно большую роль приобретают экономико-математические методы по мере внедрения информационных технологий во всех областях практики.

Математические методы являются важнейшим инструментом анализа экономических явлений и процессов, построения теоретических моделей, позволяющих отобразить существующие связи в экономической жизни, прогнозировать поведение экономических субъектов и экономическую динамику. Математическое моделирование становится языком современной экономической теории, одинаково понятным для учёных всех стран мира.

Список литературы

1. Алесинская Т. В., Сербин В. Д., Катаев А. В. Учебно-методическое пособие по курсу «Экономико-математические методы и модели. Линейное программирование». — Таганрог.: ТРТУ, 2001. — 79-82 с.

2. Баева Н. Б. Моделирование экономических и производственных процессов: Методические указания для решения задач по спецкурсу. — Воронеж: ВГУ, 2002. — 49-53 с.

3. Зуев В. П., Пыжев И. С. Финансовая математика: Учебно-методический комплекс для студентов заочного отделения экономического факультета. — Красноярск, 2002. — 22-25 с.

4.Трояновский В. М. Элементы математического моделирования в макроэкономике. — М.: Издательство РДЛ, 2001. – 83-84 с.

5.Введение в экономико-математические модели налогообложения:Учеб.пособие для студ. вузов, обуч.по эконом.спец. «Налоги и налогооблож.», «Математич.методы в экономике»/ Под ред. Черника Д. Г. — М.: Финансы и статистика, 2000. – 45-48 с.

Библиографическая ссылка

Лыкова Н.П., Николаева А ЭКОНОМИКО-МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ КАК МЕТОД НАУЧНОГО ПОЗНАНИЯ // Научный электронный архив.
URL: http://econf.rae.ru/article/5682 (дата обращения: 02.03.2020).

Получить сертификат

Источник: http://econf.rae.ru/article/5682

«МОДЕЛИ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ, ЛОГИСТИКИ И РИСКА Методическое пособие для вузов 2-е издание, переработанное и дополненное Составители: Т.В. Азарнова, Н.Б. Баева …»

Моделирование экономических процессов. Баева Н.Б.
Pages:     || 2 | 3 | 4 | 5 |   …   | 13 |

— [ Страница 1 ] —

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

И РИСКА

Методическое пособие для вузов 2-е издание, переработанное и дополненное Составители:

Т.В. Азарнова, Н.Б. Баева Издательско-полиграфический центр Воронежского государственного университета Утверждено научно-методическим советом факультета прикладной математики, информатики и механики, 11 февраля 2008 г., протокол № Рецензент канд. экон.

наук, доцент кафедры информационных технологий и математических методов в экономике экономического ф-та ВГУ И.Н. Щепина В пособии рассматриваются основные приемы моделирования экономических и производственных процессов, логистики и риска.

Проводится содержательный анализ данных приемов, рассматриваются примеры использования изложенных моделей в процессе разработки управленческих решений.

Учебное пособие подготовлено на кафедре математических методов исследования операций факультета прикладной математики, информатики и механики Воронежского государственного университета.

Рекомендуется для студентов 4 курса дневного отделения и 5 курса вечернего отделения факультета ПММ Воронежского государственного университета.

Для специальности: 010501 – Прикладная математика и информатика

ВВЕДЕНИЕ

Знакомство студентов с широким спектром упражнений и задач, представляющих собой описание фрагментов типовых ситуаций, возникающих при решении задач математического моделирования экономических и производственных процессов, является важным направлением совершенствования практически полезных навыков прикладного математика.

Основной задачей данного пособия является создание учебной среды, позволяющей научить студентов использовать разнообразные приемы моделирования при решении реальных задач экономической практики.

Учебное пособие содержит три главы, в которых приведен справочный материал, содержащий описание приемов моделирования, и перечень заданий, выполнение которых в указанном порядке обеспечивает устойчивое овладение данными приемами.

Типы заданий охватывают весь круг прикладных макроэкономических и микроэкономических моделей, читаемых в курсе «Моделирование экономических и производственных процессов» для студентов 4 курса дневного и 5 курса вечернего отделения факультета ПММ.

Приложение содержит ряд заданий и упражнений для самостоятельной работы студентов и может быть использовано студентами для самоконтроля глубины усвоения основ прикладного моделирования экономических и производственных процессов.

При выполнении заданий, приведенных в данных методических указаниях, следует иметь в виду, что в первую очередь необходимо овладеть приемами, используемыми в § 1 и § 2. Все остальные задания можно выполнять в произвольном порядке. Внутри параграфов задания приведены в порядке возрастания сложности разработки их математических моделей.

ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ

§ 1. Основные понятия и факты Экономико-математическое моделирование понимается как направление экономической теории, изучающее закономерности построения анализа, интерпретации и применения для решения практически важных задач особых объектов, являющихся образами экономических процессов или явлений.

Экономические объекты, процессы или явления будем впредь называть оригиналами. Моделирующее отображение оригиналов представимо в виде композиции двух отображений – огрубляющего и гомоморфного.

Сначала огрубляющее отображение выделяет в исходном объекте её составную часть с меньшим числом элементов и связей между ними, а затем гомоморфное отображение переводит подсистему в модель, при этом может произойти дальнейшее огрубление, т. е.

число элементов и связей в модели может стать меньше, но при этом не происходит искажения структуры или иных характеристик, сохраняющих сущность оригинала. Итак, иногда модель – это упрощенный образ оригинала, который в процессе изучения замещает оригинал, сохраняя при этом важные для данного изучения, типичные его черты.

Обратный переход от модели к оригиналу называется интерпретацией модели. Одно из достоинств метода моделирования состоит в возможности построения моделей с «удобной» структурой, что делает исследование модели более легким, чем исследование оригинала. Существует много иных дефиниций понятия – «модель», «моделирование».

Наиболее известным и используемым многими исследователями является следующее определение, введенное в [1].

Моделью называется объект искусственно созданный или реально существующий, который с заданной степенью схожести воспроизводит оригинал так, что позволяет получить новую информацию об оригинале.

Моделирование – исследование оригинала с помощью модели.

Разработка модели, таким образом, составляет этап сложного процесса, который содержит и иные этапы – анализ модели, проверка её адекватности оригиналу, выбор исходной информации и проверка её достоверности. Приведем следующую классификацию моделей.

По типу реализации различаются материальные и знаковые модели.

Под материальным моделированием понимают моделирование, при котором исследование ведется на основе модели, воспроизводящей основные функциональные, динамические и геометрические характеристики изучаемого объекта. При этом выделяют физическое и аналоговое моделирование.

Физическим называется моделирование, при котором реальному объекту противопоставляется его уменьшенная или увеличенная копия, допускающая исследование в лабораторных условиях, с последующим переносом свойств изучаемых процессов или явлений с модели на объект на основе теории подобия.

Аналоговое моделирование основано на аналогии процессов и явлений, имеющих разную физическую природу, но одинаково описываемых формально (схемами, уравнениями и т. п.).

Модели (вербальные, графические) в аналитической форме) Точечные – пространственные Точечные – пространственные Статические – динамические Статические – динамические Идеальное моделирование основано не на материальной аналогии модели и объекта, а на идеальной и носит теоретический характер. Это, как правило, искусственно созданный объект.

Интуитивное моделирование основано на интуитивном представлении об объекте исследования, не поддающемся формализации или не нуждающемся в ней. Знаковое моделирование использует в качестве модели условное описание системы оригинала с помощью данного алфавита символов и операций над символами.

Наиболее важными в данном классе являются концептуальные и математические модели.

Концептуальная модель представляет собой агрегированный вариант традиционного описания основных закономерностей функционирования изучаемой системы, состоящий из научного текста, сопровождаемого блок-схемой системы, таблицами, графиками и т. п. К достоинствам концептуальных моделей относятся универсальность, гибкость, разнообразие средств выражения и др. Среди недостатков выделяют высокую неоднозначность интерпретации и статичность.

Математической моделью оригинала называется его представление в виде Здесь V E m – внешние переменные и параметры; X E n – внутренние переменные и параметры; = 1,…, m1 – функции связи внешних и внутренних переменных и параметров; F = (F1,…, Fn ) – передаточная функция. Выражение (*) может быть переписано в виде:

Если переменные V и X – функции времени, то задача (**) определяется на t [ t 0,T ] и становится динамической:

Описанные выше модели называются балансовыми. Весьма распространены модели скалярной оптимизации, векторной оптимизации и теоретико-игровые. Их вид приведен ниже.

В зависимости от свойств разрешающего оператора F математические модели динамичных систем классифицируются по разным признакам. Модель называется аналитической, если для оператора F найдено точное аналитическое выражение, позволяющее для любых входных функций и начальных условий непосредственно определять значение переменных состояния x0 в любой нужный момент t.

В подавляющем большинстве случаев нахождение аналитического выражения для разрешающего оператора F оказывается затруднительным или в принципе невозможным. Если совокупность уравнений и неравенств непротиворечива (среди них нет взаимоисключающих) и полна (т. е.

она содержит всю необходимую информацию для нахождения решений), и с помощью ЭВМ, удается найти их численное решение, в результате чего получается реализация оператора F в виде машинной программы, с помощью которой по входным и начальным данным рассчитываются значения переменных состояний х1(t),…, хn(t) на интервале t [t 0,T ], то в данном случае мы имеем имитационную модель.

В детерминированной модели значения переменных выражения (*) не меняются во времени. Стохастическая модель каждой переменной x ставится в соответствие с распределением возможных значений, характеризуемое такими вероятностными показателями, как математическое ожидание, M{хi}, среднее квадратическое отклонение (x i ) и т. п.

Дискретная модель описывает поведение системы на фиксированной последовательности моментов времени. В непрерывной модели значения переменных состояния могут быть рассчитаны для любой точки t рассматриваемого интервала [t 0,T0 ].

По характеру описания пространственного строения систем модели делятся на точечные, в которых пространственное строение системы не рассматривается, т. е. в качестве переменных фигурируют зависящие только от времени переменные хi(t), i= 1…,n, и пространственные, в которых переменные хi зависят не только от времени, но и от пространственных координат.

Важное место среди методов моделирования занимает структурное представление процессов и явлений. Его мы будем называть структурным моделированием. В следующем параграфе мы рассмотрим сущность структурного моделирования и приведем пример структурно-логической модели.

Pages:     || 2 | 3 | 4 | 5 |   …   | 13 |

Источник: http://dis.konflib.ru/metodichki-mehanika/838660-1-modeli-proizvodstvennih-processov-logistiki-riska-metodicheskoe-posobie-dlya-vuzov-2-e-izdanie-pererabotannoe-dopolnenno.php

Актуальные экономико-математические методы исследования современных экономических процессов

Моделирование экономических процессов. Баева Н.Б.

Economic-mathematical methods applied in the studies, in which studied objects are substitutes.

In recent years, the term «modeling» is widespread in marketing, so the name «economic-mathematical methods of research» can be replaced with a wider.

Method research model simplifies the situation, allowing you to concentrate on the most important aspects, and can be used for causal, test and forecast research. The main problem of its use is to build adequate model.

Keywords: method, economic model, Economics, economic processes.

К экономическим моделям могут относится модели: экономического роста, потребительского выбора, равновесия на финансовом и товарном рынке и многие другие.

Модель — это логическое или математическое описание компонентов и функций, отражающих существенные свойства моделируемого объекта или процесса. Модель используется как условный образ, сконструированный для упрощения исследования объекта или процесса. Природа моделей может быть различна. Модели подразделяются на: вещественные, знаковые, словесное и табличное описание и др.

Экономико-математическая модель (ЭММ) — это математическое описание экономического объекта или процесса с целью их исследования и управления ими. Это математическая запись решаемой экономической задачи.

Основные типы моделей [1, c. 18]:

          Экстраполяционные модели;

          Факторные эконометрические модели;

          Оптимизационные модели;

          Балансовые модели, модель межотраслевого баланса (МОБ);

          Экспертные оценки;

          Теория игр;

          Сетевые модели;

          Модели систем массового обслуживания.

Экономико-математические методы в сочетании с применением персональных компьютеров позволяют в ряде случаев при доступных затратах получать рациональные управленческие решения.

В настоящее время апробированы математические методы решения следующих задач подготовки управленческих решений

          оптимизация выпуска однородной продукции при нескольких технологических способах, что обеспечивает получение максимальной общей прибыли при ограничениях на объемы ресурсов и запасов и на производство единицы продукции;

          оптимизация производственной программы при заданной технологии, когда находятся объемы выпуска продукции, обеспечивающие получение максимальной прибыли при заданных значениях расходов ресурса и величины прибыли на единицу продукции;

          оптимизация состава парка машин разного типа, когда известны их стоимость и производительность при выполнении конкретных работ, обеспечивающих выполнение плана при минимуме затрат на покупку этих машин;

          определение оптимальной загрузки оборудования для достижения минимума себестоимости продукции при известных стоимости и производительности этого оборудования;

          оптимальное размещение организации — поставщика продукции, при котором минимизируется число тонно-километров перевозок к потребителям с заданным потреблением и расположением;

          распределение капитальных вложений для объектов незавершенного строительства, по каждому из которых известны предыдущие капитальные вложения и максимально возможные для освоения их объемы в планируемом году при соблюдении предельного значения общего фонда финансирования незавершенного строительства,

          прикрепление потребителей к поставщикам таким образом, чтобы суммарные транспортные расходы по доставке всей продукции потребителям были минимальны;

          назначение по объектам работников различных специальностей для достижения максимальной производительности;

          расчет временных и ресурсных параметров сетевых моделей. Экономико-математическая модель — это описание, отображающее экономический процесс или явление с помощью математических выражений (уравнений, функций, неравенств, тождеств), имитирующих поведение моделируемого объекта в заданных или возможных условиях его реального существования.

Математические модели, используемые в экономике, можно подразделять на классы по ряду признаков, относящихся к особенностям моделируемого объекта, цели моделирования и используемого инструментария модели макро- и микроэкономические, теоретические и прикладные, оптимизационные и равновесные, статические и динамические, детерминированные и стохастические.

Макроэкономические модели описывают экономику как единое целое, связывая между собой укрупненные материальные и финансовые показатели: ВНП, потребление, инвестиции, занятость, процентную ставку, денежную массу и пр.

Микроэкономические модели характеризуют взаимодействие структурных и функциональных элементов экономики либо поведение отдельного элемента в рыночной среде. Вследствие разнообразия типов экономических элементов и форм их взаимодействия на рынке микроэкономическое моделирование занимает основную часть экономико-математической теории.

Наиболее серьезные теоретические результаты в микроэкономическом моделировании в последние годы получены в исследовании стратегического поведения организаций в условиях олигополии с использованием аппарата теории игр. В экономико-математических методах применяются различные разделы математики, математической статистики, математической логики.

Большую роль в решении экономико-математических задач играют вычислительная математика, теория алгоритмов и другие дисциплины.

Использование математического аппарата принесло ощутимые результаты при решении задач анализа процессов расширенного производства, определения оптимальных темпов роста капиталовложений, оптимального размещения, специализации и концентрации производства, задач выбора оптимальных способов производства, определения оптимальной последовательности запуска в производство, задачи подготовки производства методами сетевого планирования и многих других [5, c. 42].

Для решения стандартных проблем характерны четкость цели, возможность заранее выработать процедуры и правила ведения расчетов.

Существуют следующие предпосылки использования методов экономико-математического моделирования, важнейшими из которых являются высокий уровень знания экономической теории, экономических процессов и явлений, методологии их качественного анализа, а также высокий уровень математической подготовки, владение экономико-математическими методами. Прежде чем приступить к разработке моделей, необходимо тщательно проанализировать ситуацию, выявить цели и взаимосвязи, проблемы, требующие решения, и исходные данные для их решения, вести систему обозначений и только тогда описать ситуацию в виде математических соотношений.

 Сетевые модели как современные методы анализа экономических процессов

Традиционные способы: способ цепных подстановок, способы абсолютных и относительных разниц, балансовый способ, индексный метод, а также методы корреляционно-регрессионного, кластерного, дисперсионного анализа, и др. Наряду с этими способами и методами в экономическом анализе используются и специфически математические способы и методы.

Экономико-математические модели могут строиться не только в виде формул (аналитическое представление модели), но и в виде числовых примеров (численное представление), в виде таблиц (матричное) и в виде графов (сетевое представление).

Соответственно по этому принципу различают модели: аналитические, матричные, сетевые.

В анализе хозяйственной деятельности используется метод сетевого планирования. Он базируется на применении сетевых графиков. Последние выражаются в виде определенной цепи работ и событий, связанных технологической последовательностью.

Под работой здесь понимается процесс, который предшествует возникновению определенного события. Работа включает как технологические процессы, так и время ожидания, сопряженное с перерывами в этих процессах. Под событием понимают результат работы, без которого не могут быть начаты другие работы.

В сетевых графиках события обозначаются кружками, где внутри пишется номер. Стрелки, помещающиеся между кружками, выражают намеченную последовательность выполнения работ. Числа, указанные возле стрелок, характеризуют намеченную длительность выполнения работ.

С помощью сетевых графиков достигается либо оптимизация времени выполнения, либо оптимизация величины себестоимости осуществляемых работ [6, c. 53].

Сетевая модель (модель управления и планирования производством) — план выполнения некоторой совокупности взаимосвязанных операций (работ) заданный в специфической форме сети. Примером данной модели может служить сетевой график (рис. 1).

Рис. 1. Сетевой график

В кружках указаны номера событий, соединительными линиями (стрелками) работа, а цифры над ними указана ориентировочная стоимость, продолжительность или трудоемкость работ. В соответствии элементам графов (дугам и вершинам) ставятся числовые оценки (параметры операции: продолжительность, стоимость или трудоемкость). Что позволяет осуществлять глубокий анализ, а в ряде случаев оптимизацию.

Сетевая модель определяет с любой требуемой степенью детализации состав работ комплекса и порядок выполнения их во времени. Отличительной особенностью сетевой модели в сравнении с другими формами представления планов является четкое определение всех временных взаимосвязей операций.

Сетевые модели используются не только как средство решения разнообразных задач планирования и прогнозирования. Сетевые модели также служат для построения специального класса системы организационного управления, получивших название систем сетевого планирования и управления.

Среди различных методом систем сетевого планирования и управления наиболее распространены: метод критического пути — анализ состояния процесса в каждый заданный момент времени и определение последовательности работ с целью избегания задержки времени выполнения плана к намеченному сроку и метод оценки пересмотра программ.

 Современные оптимизационные модели для анализа экономических процессов

Решение многих задач экономического прогнозирования связано с выбором наиболее приемлемого для данных условий варианта. Для этого используются модели типа оптимизационных.

Современные математические методы позволяют отыскать оптимальный вариант плана, избежав при этом прямого перебора всех возможных вариантов.

Одним из наиболее глубоко разработанных и широко проверенных на практике методов решения задач оптимизации является линейное программирование.

Задача линейного программирования характеризуется линейной целевой функцией переменных и системой ограничений в виде линейных неравенств и уравнений [3, c. 37]:

(1)

i=1, …, m; j=1, …, n.

При постановке задачи на максимум выпуска продукции при заданных ограничениях по ресурсам вводимые переменные и коэффициенты обычно имеют следующий смысл: Хj — выпуск продукции при использовании j-го технологического способа; Cj — цена единицы продукции при j-м способе производства; aij — расход i-го ресурса при j-м способе (коэффициенты материалоемкости, фондоемкости, трудоемкости); bi — наличие i-го ресурса.

Двойственной по отношению к задаче на максимум является задача на минимум:

(2)

Здесь оптимальные значения Yi выступают как двойственные оценки ресурсов. Ресурсы, которые в оптимальном плане исходной задачи оказываются в избытке (например, вода в речных районах), имеют нулевые двойственные оценки. Оценки всех других ресурсов заведомо ненулевые и тем выше, чем выше дефицитность ресурса в оптимальном плане.

При решении более сложных задач используются вариантные ли­нейные модели развития производства, получившие свое выражение в целочисленном программировании.

Задачи оптимального программирования в наиболее общем виде классифицируют по следующим признакам.

  1. По характеру взаимосвязи между переменными — а) линейные, б) нелинейные.

В случае а) все функциональные связи в системе ограничений и функция цели — линейные функции; наличие нелинейности в хотя бы одном из упомянутых элементов приводит к случаю б).

  1. По характеру изменения переменных — а) непрерывные, б) дискретные.

В случае а) значения каждой из управляющих переменных могут заполнять сплошь некоторую область, в случае б) все или хотя бы одна переменная могут принимать некоторые целочисленные значения.

  1. По учету фактора времени — а) статические, б) динамические.

В задачах а) моделирование и принятие решений осуществляются в предположении о независимости от времени элементов модели в течение периода времени, на который принимается управленческое решение; в случае б) такое предположение достаточно аргументировано принято не может быть.

  1.                По наличию информации о переменных — а) задачи в условиях полной определенности (детерминированные), б) задачи в условиях неполной информации (случай риска), в) задачи в условиях неопределенности.

В задачах б) отдельные элементы являются вероятностными величинами, однако дополнительными статистическими исследованиями могут быть установлены их законы распределения вероятностей; в случае в) можно сделать предположение о возможных исходах случайных элементов, но нет возможности сделать вывод о вероятностях исходов.

  1.                По числу критериев оценки альтернатив — а) простые (однокритериальные), б) сложные (многокритериальные) задачи.

Задачи а) — задачи, где экономически приемлемо использование одного критерия оптимальности или удается специальными процедурами (например «взвешиванием приоритетов») свести многокритериальный поиск к однокритериальному; б) многокритериальная оптимизация — выбор управленческого решения по нескольким показателям.

На практике многокритериальный поиск тем или иным способом сводят к однокритериальному: методом последовательных уступок, способом выделения «главного» показателя, оптимизацией по обобщенной целевой функции и др.

Развитие и совершенствование методов решения задач оптимального программирования идет от случаев типа а) к случаям типа б), в). Наиболее изученными задачами являются задачи линейного программирования (ЗЛП), для которых разработан универсальный метод решения — метод последовательного улучшения плана (симплекс-метод), т. е. любая ЗЛП решается (реализуется) этим методом.

Пакет Excel содержит программу (надстройку) Поиск решения, позволяющую реализовывать модели линейной, нелинейной и дискретной оптимизации. Первым шагом при работе с командой (программой, надстройкой) Сервис/Поиск решения является создание специализированного листа, т. е. специальная запись ЭММ в терминах электронной таблицы (ЭТ) Excel.

Для этого необходимо создать в специальном окне диалога целевую ячейку, в которой записывается целевая функция модели, а также одну или несколько изменяемых (переменных) ячеек, которые, как правило, отвечают управляющим переменным в модели и значения которых могут изменяться для достижения экстремума (максимума или минимума) целевой функции.

Для успешного поиска решения необходимо, чтобы каждая из переменных ячеек (в общем случае можно задать до двухсот таких ячеек) влияла на целевую ячейку (другими словами, формула в целевой ячейке должна опираться в вычислениях на значения переменных ячеек).

В противном случае при выполнении команды Поиск решения появляется сообщение об ошибке Результаты целевой ячейки не сходятся [2, c. 29].

Ограничения модели определяются с помощью значений соответствующих ячеек, которые должны находиться в определенных пределах или удовлетворять граничным условиям. Ограничения могут налагаться как на целевую, так и на переменные ячейки (по два ограничения для каждой изменяемой ячейки с указанием верхнего и нижнего пределов, а также до ста дополнительных).

Таким образом, на специализированном листе должны содержаться ячейки, в которых вычисляются ограничиваемые величины. Тип каждого из ограничений модели (≤, =, ≥) задается (вводится) в специальном окне диалога при выполнении команды Поиск решения.

Численные значения самих ограничений включать в специализированный лист необязательно; они также вводятся в специальном окне диалога при выполнении команды Поиск решения. После команды Выполнить диалогового окна Поиск решения осуществляется поиск оптимального решения: в итоге появляется диалоговое окно Результаты поиска решения.

В режиме Справки этого диалогового окна содержатся сведения об итоговых сообщениях процедуры поиска решения. Например, в случае несовместности системы ограничений Excel будет выдавать сообщение Поиск не может найти подходящего решения.

Если же решение задачи отсутствует вследствие неограниченности целевой функции на множестве допустимых решений, то Excel будет выдавать сообщение Значения целевой ячейки не сходятся. При успешном завершении решения задачи появляется диалоговое окно Результат поиска решения. Решение найдено. С помощью рубрики Результаты этого диалогового окна можно получить отчет по результатам решения.

 Нелинейное программирование для анализа экономических процессов

Предметом нелинейного программирования является класс экстремальных задач с ограничениями в форме равенств и неравенств, в которых или в целевой функции имеются нелинейные компоненты.

Также задачи вызывают интерес у математиков, экономистов и инженеров в связи, например, с вопросами моделирования экономических, технических и технологических процессов, выработки оптимальных вариантов перевозок, распределение продуктов, определение последовательности обработки деталей.

При этом исследованию подлежат проблема существования решения, структура множества решений и эффективные алгоритмы отыскания решений.

Задача нелинейного программирования возникает в мириадах форм и встречается в естественных и физических науках, технике, экономике, математике, в сфере деловых отношений и в науке управления государством. Были рассмотрены даже ее применения в философии. В наиболее абстрактной форме задача нелинейного программирования ставится так: что-то должно быть максимизировано (или минимизировано).

Экономика, сфера деловых отношений и наука управления государством. Основной целью нелинейного программирования является исследование методов решения задачи. Вместе с тем нелинейное программирование содержит также эффективную схему для формализованной постановки задач, хотя в ряде случаев некоторые из привлекаемых функций не могут быть определены.

Например, нелинейное программирование тесно связано с основной экономической задачей. В экономике рассматриваются задачи о распределении ограниченных ресурсов таким образом, чтобы либо максимизировать эффективность, либо, если изучается потребитель, максимизировать потребление. Нелинейное программирование, очевидно, соответствует этой схеме.

Целевая функция здесь может отражать эффективность, которую мы пытаемся максимизировать, в то время как ограничения могут выражать условия, вызванные недостатком ресурсов. Аналогичная целевая функция может быть математическим выражением потребления.

Таким образом, имеется связь между задачей нелинейного программирования и основной экономической задачей.

В такой общей постановке определение точных форм функций может оказываться невозможным; однако в конкретных применениях точный вид всех функций часто может быть определен непосредственно. Рассмотрим некоторое промышленное предприятие, например производящее пластмассы.

Здесь за эффективность может быть принята прибыль, а ограничения интерпретированы как наличная рабочая сила, производственные площади, производительность оборудования и т. д.

В таком конкретном случае имеются исходные количественные данные, и тогда задача нелинейного программирования может быть точно сформулирована и решена.

Метод «затраты эффективность» также укладывается в схему нелинейного программирования. Метод был разработан для использования при принятии решений в управлении государством, когда вместо функций прибыли имеется общая функция эффективности — благосостояния.

Здесь возникают две тесно связанные задачи нелинейного программирования: либо максимизация затрат при условии, чтобы эффект был выше некоторого минимального уровня.

При ограниченном количестве данных, имеющихся в распоряжении различных государственных учреждений, конкретные задачи метода «затраты — эффективность» часто могут быть хорошо смоделированы с помощью нелинейного программирования.

Если даже проблема слишком расплывчата для формулировки в виде задачи нелинейного программирования, то часто с помощью нелинейного программирования удается получить первые приближения или же решить различные ее части [2, c. 26].

Упомянутые применения нелинейного программирования концентрированы на задачах о принятии решений.

Действительно, существенная сторона нелинейного программирования заключается в том, что оно является подспорьем индивидууму — исполнителю или человеку, принимающему государственное решение.

Конечно, опытный человек, принимающий решение, не считает, что решение задачи нелинейного программирования непосредственно является лучшим ответом на вопрос реального мира.

Полученное решение является, естественно, лишь рекомендуемым, и принимающий его должен исследовать предположения и точность постановки задачи нелинейного программирования, прежде чем принять окончательное решение. Несмотря на это, многие задачи программирования прошли проверку на практике и решение их, подсказанное оптимальной точкой, применяется почти без каких-либо изменений.

Широкой областью для применения нелинейного программирования является планирование цен, продукции и рекламы фирмы.

Транспортная задача становится нелинейной, если стоимость транспортировки единицы товара зависит от общего количества перевозимого товара. Задача назначения также становится нелинейной, если элементы матрицы соответствия не являются постоянными. В этой задаче также можно столкнуться с трудностью, вызванной требованием целочисленности.

И, наконец, все линейные задачи программирования становятся нелинейными, если ввести неопределенность и риск, если вероятности соответствующих величин (например, цены, возможности снабжения и так далее) не существуют и если функция цели учитывает риск при принятии различных решений.

Предположим, например, что мы должны минимизировать совокупность затрат на производство некоторой продукции и организацию складских работ путем выбора соответствующего графика. График не может быть выбран произвольно.

Предположим, что мы должны удовлетворить некоторую потребность в продукции, но существуют количественные ограничения на эту продукцию, выпускаемую в единицу времени.

Таким образом, необходимо выбрать такой производственный график, который минимизирует затраты и в то же время удовлетворяет определенным ограничениям.

Литература:

  1.      Бабешко Л. О. Основы эконометрического моделирования: Учеб. пособие. — 2-е, исправленное. — М.: КомКнига, 2006. — 432 с.
  2.      Баева Н. Б. Моделирование экономических и производственных процессов: Методические указания для решения задач по спецкурсу. — Воронеж: ВГУ, 2002. — 53 с.
  3.      Берндт Э. Практика эконометрики: классика и современность. — М.: Юнити-Дана, 2005. — 848 с.
  4.      Магнус Я. Р., Катышев П. К., Пересецкий А. А. Эконометрика. Начальный курс. — М.: Дело, 2007. — 504 с.
  5.      Трояновский В. М. Элементы математического моделирования в макроэкономике. — М.: Издательство РДЛ, 2001. — 84 с.
  6.      Эконометрика. Учебник / Под ред. Елисеевой И. И. — 2-е изд. — М.: Финансы и статистика, 2006. — 576 с.

Основные термины(генерируются автоматически): нелинейное программирование, задача, модель, Поиск решения, диалоговое окно, целевая функция, целевая ячейка, сетевое планирование, процесс, решение.

Источник: https://moluch.ru/th/5/archive/16/439/

Biz-books
Добавить комментарий