Как определить высоту спутника…

Определение параметров настройки спутниковой антенны по карте, солнцу, компасу

Как определить высоту спутника...

Выбор спутника:
Спутники по операторам:Hot Bird 13B/13C/13E 13°EТриколорТВ,НТВ+ (Экспресс-АМУ1)Триколор-Сиб (Экспресс-АТ1 56°E)OTAU TV (KazSat 3 58.5°E)МТС ТВ (ABS-2 75°E)Телекарта (Intelsat-15 85°E)Телекарта, НТВ+ (Express AM5/AT2 140°E)Спутники по координатам:180E    Intelsat 18172E    Eutelsat 172B169E    Horizons 3e166E    Intelsat 19163.

5E Yamal 202162E    Superbird B3160E    Optus D1159E    ABS 6156E    Optus D3/Optus 10154E    JCSAT 2B152E    Optus D2150.5E BRIsat146E    Nusantara Satu144E    Superbird C2142E    Apstar 9140E    Express AM5/Express AT2138E    Telstar 18 Vantage134E    Apstar 6C132E    JCSAT 5A/Vinasat 1,2130E    ChinaSat 6C/2D128.

5E LaoSat 1128E    JCSAT 3A125E    ChinaSat 6A124E    JCSAT 4B/JCSAT 16122E    AsiaSat 9120E    AsiaSat 6/Thaicom 7119.3E Thaicom 4/Bangabandhu 1118E    Telkom 3S116E    ABS 7/Koreasat 6,7115.5E ChinaSat 6B113E    Koreasat 5,5A/Palapa D110.5E ChinaSat 10110E    BSAT 3A,3C/JCSAT 110R,15108.2E SES 7/SES 9/Telkom 4105.5E AsiaSat 7103.5E ChinaSat 2C101.4E ChinaSat 9A100.

5E AsiaSat 5 98E    ChinaSat 11 97.3E G-Sat 9 96.5E Express AM33 95E    SES 8/SES 12 93.5E G-Sat 15/G-Sat 17 92.2E ChinaSat 9 91.5E Measat 3/3b/3a 90E    Yamal 401 88E    ST 2 87.5E ChinaSat 12 86.5E KazSat 2 85E    Intelsat 15/Horizons 2 83E    Insat 4B/G-Sat 10,31 78.5E Thaicom 5/6/8 76.5E Apstar 7 75E    ABS 2/ABS 2A 74E    G-Sat 18/G-Sat 11 72.1E Intelsat 22 70.5E Eutelsat 70B 68.

5E Intelsat 20/36 66E    Intelsat 17 65E    Amos 4 64.2E Intelsat 906 62E    Intelsat 39 61E    ABS 4 60E    Intelsat 33e 58.5E KazSat 3 57E    NSS 12 56E    Express AT1 55E    G-Sat 8,16/Yamal 402 53E    Express AM6 52.5E Al Yah 1 52E    TurkmenÄlem/MonacoSat 51.5E Belintersat 1 50.5E NSS 5 50E    Türksat 4B 49E    Yamal 601 48E    G-Sat 19 47.

5E Intelsat 10 46E    AzerSpace 1/1a 45E    AzerSpace 2/Intelsat 38 42.5E NigComSat 1R 42E    Türksat 3A/Türksat 4A 40E    Intelsat 902/Express AM7 39E    Hellas Sat 3/4 38E    Paksat 1R 36E    Экспресс-АМУ1/Eutelsat 36B 33E    Eutelsat 33E/Intelsat 28 31.5E Astra 5B 31E    Hylas 2 30.5E Arabsat 6A/5A 28.2E Astra 2E/2F/2G 26E    Badr 4/5/6/7, Es'hail 2 25.5E Es'hail 1 23.

5E Astra 3B 21.5E Eutelsat 21B/EDRS C 20E    Arabsat 5C 19.2E Astra 1KR/1L/1M/1N 17E    Amos 17 16E    Eutelsat 16A 13E    Hotbird 13B/13C/13E 10E    Eutelsat 10A  9E    Eutelsat Ka-Sat 9A/9B  7E    Eutelsat 7C/7A/7B  4.9E SES 5/Astra 4A  3E    Eutelsat 3B/Rascom QAF 1R  1.9E BulgariaSat 1  1.5E Eutelsat 5 West B  0.

8W Thor 7/5/6, Intelsat 10-02  3W    ABS 3A  4W    Amos 7/Amos 3  5W    Eutelsat 5 West A  7W    Nilesat 201/Eutelsat 7  8W    Eutelsat 8 West B 11W    Express AM44 12.5W Eutelsat 12 West B/WGS 3 14W    Express AM8 15W    Telstar 12 Vantage 18W    Intelsat 37e 20W    NSS 7/Al Yah 3 22W    SES 4 24.5W Intelsat 905/Alcomsat 1 27.5W Intelsat 907 29.

5W Intelsat 904/901 30W    Hispasat 30W-4/30W-5/30W-6 31.5W Intelsat 25 33.5W Hylas 4 34.5W Intelsat 35e 36W    Hispasat 36W-1 37.5W NSS 10/Telstar 11N 40.5W SES 6 43.1W Intelsat 11/Sky Brasil 1 45W    Intelsat 14 47.5W SES 14 53W    Intelsat 23 55.5W Intelsat 34 58W    Intelsat 21 61W    Amazonas 2/3/5 61.4W EchoStar 18 61.

5W EchoStar 16 63W    Telstar 19 Vantage/14R 65W    Star One C1/Eutelsat 65 67W    SES 10 67.9W EchoStar 23/Viasat 2 70W    Star One C2/C4 71.8W Arsat 1 72.7W Nimiq 5 73.9W Hispasat 74W-1 75W    Star One C3 76.2W Intelsat 16 77W    QuetzSat 1 78W    Simón Bolívar 78.8W Sky Mexico 1 81W    Arsat 2 82W    Nimiq 4 83W    AMC 6 84W    Star One D1 85.1W XM 3 S 85.

2W Sirius XM 5 87W    NSS 6 87.1W SES 2/TKSat 1 89W    Galaxy 28 91W    Galaxy 17/Nimiq 6 95W    Galaxy 3C/Intelsat 31/30 97W    Galaxy 19 97.1W EchoStar 19 99.2W Galaxy 16/DirecTV 11/14100.8W DirecTV 15101W    DirecTV 8/SES 1103W    DirecTV 10/12/SES 3105W    AMC 15/EchoStar 105/SES 11107.1W EchoStar 17107.3W Anik F1R/Anik G1110W    DirecTV 5/EchoStar 10/11111.

1W Anik F2113W    Eutelsat 113 West A114.8W Mexsat Bicentenario114.9W Eutelsat 115 West B115W    XM 4 S116W    Sirius FM 6117W    Eutelsat 117 West A/West B119W    Anik F3/DirecTV 7S/EchoStar 14121W    EchoStar 9/Galaxy 23123W    Galaxy 18125W    AMC 21/Galaxy 14127W    Galaxy 13/Horizons 1129W    Ciel 2131W    AMC 11133W    Galaxy 15139W    AMC 8/AMC 18177W    Yamal 300K/NSS 9

Магнитное склонение:

0.00° ± 0.00°

Угол поворота конвертора:

0.00°

Прием сигнала с данного спутника в выбранном месте не возможен!

Расcтояние до препятствия:

0 м.

Высота преодолеваемого препятствия:

0 м.

Для правильной настройки спутниковой антенны по углу места необходимо знать параметры Вашей антенны. Для офсетной антенны основным параметром является офсетный угол β. Узнать значение данного параметра можно в паспорте антенны или на сайте производителя. Для большинства производителей он находится в пределах 18°-27°.

Выяснив значение офсетного угла β, можно вычислить значение угла наклона Y=α-β для настройки на выбранный Вами спутник. Угол α — угол места для выбранного спутника.

Не пугайтесь, если в результате расчетов у Вас получилось отрицательное значение Y, для офсетных антенн это нормальное явление, антенна будет направлена немного «в землю».

Азимут оси луча антенны на спутник означает выраженный в градусах угол, образованный между линией, указывающей географическое направление на север, и проекцией оси главного лепестка диаграммы направленности антенны на плоскость семной поверхности в месте установки антенны, направленной на спутник.

Положительное направление азимута определяется при движении антенны от направления на север по часовой стрелке.

Истинный азимут, или географический азимут — это угол, измеряемый по часовой стрелке между географическим меридианом и направлением на объект.

Магнитный азимут — угол, откладываемый по часовой стрелке между магнитным меридианом (направлением на Север стрелки компаса) и направлением на объект.

Положительному значению угла поворота соответствует поворот конвертера по часовой стрелки, отрицательному значению — против часовой стрелки. Поворот конвертера указан со стороны расположения спутниковой тарелки.

Для приема сигналов со спутников, вещающих в круговой поляризации (ТриколорТВ, НТВ+) угол поворота конвертера не важен.

Магнитное склонение — угол между истинным меридианом и магнитным. Восточное магнитное склонение считается положительным, западное магнитное склонение отрицательным.

Если во время работы с интерактивной картой на линии направления на спутник, вблизи места установки антенной системы, расположено препятствие (дерево, строение и т.п.) Вам необходимо проверить, не экранирует ли данный объект сигнал со спутника.

Для определения максимальной высоты преодолеваемого препятствия, передвиньте маркер -символизирующий препятствие на место, где расположен исследуемый объект.

В графе Расcтояние до препятствия высветится расстояние от места установки антенны до объекта, в графе Высота преодолеваемого препятствия будет указана максимальная высота препятствия, которое не будет мешать приему спутника.

Данный список содержит названия спутников, расположенных на геостационарной орбите в ранее выбранной позиции (меню «Выбор спутника»).

На каждом спутнике установлено некоторое количество транспондеров (приемо-передатчиков). В зависимости от направления передающих антенн транспондеры делятся на группы. Направление, в котором передает группа транспондеров, называется лучом.

Так как с одного и того же спутника может вестись трансляция сигнала в различные части земли (например, в Россию и Африку), Вам необходимо выбрать интересующий луч, охватывающий место предполагаемого приема спутникового сигнала.

  1. Выберите в списке “Выбор спутника” название (координаты) интересующего Вас спутника, либо укажите название оператора спутникового телевидения (например МТС, Триколор ТВ, НТВ+)

  2. Для поиска координат установки спутниковой антенны на карте введите адрес объекта в поле “Адрес или объект”(находится в верхней левой части карты). В случае, если система найдет несколько адресов подходящих под параметры поиска, Вам будет предложено выбрать один из них. При выборе требуемого адреса карта автоматически настроится на интересующий Вас объект.

    Альтернативный метод поиска текущего адреса — использование кнопки “Определить местоположение”.

    Метод особенно эффективен если Вы находитесь рядом с местом где будет производиться настройка спутниковой антенны, а для доступа к карте используется устройство оснащенное GPS (например смартфон или планшет).

    В этом случае центр карты будет перемещен в точку с координатами полученными с GPS устройства.

  3. На спутниковой карте необходимо как можно точнее задать координаты места установки антенны.

    Для этого увеличивается масштаб карты, “Тип карты” переключается в режим отображения спутниковых снимков Google Map или Yandex Map (в зависимости от того какая карта более детализирована для вашего региона).

    Левой кнопкой мыши отмечается точка монтажа спутниковой тарелки. В указанном месте появится маркер с линией направленной в сторону спутника. Расположение маркера можно изменять, перетаскивая его по карте.

    Убедитесь что приему спутникового сигнала ничего не мешает — линия направления на спутник не пересекает крупные деревья, высокие здания и т.п.. Если линия пересекает крупный объект, необходимо удостовериться в том, что он не будет мешать приему сигнала. Для этого можно воспользоваться кнопкой “Расчет препятствий”.

    Перетащите маркер, символизирующий препятствие, на исследуемый объект. В графе “Высота преодолеваемого препятствия” будет рассчитана максимальная высота объекта, который не будет мешать приему. Если объект, расположенный на пути приема сигнала со спутника, возвышается над антенной больше данного значения, он может препятствовать приему.

    В таком случае придется увеличить высоту установки антенны, либо выбрать другое место.

  4. Различные спутники над разными регионами передают сигнал различной мощности. Данный параметр носит название Эквивалентная изотропно-излучаемая мощность (EIRP — Equivalent Isotropically Radiated Power).

    От EIRP в точке приема зависит размер спутниковой тарелки. Определить размер спутниковой антенны, необходимой для уверенного приема спутникового телевидения, можно из таблицы прилагаемой к приемному оборудованию.

    Если Вы не располагаете такой информацией, можно воспользоваться “Картой зоны покрытия спутника” (кнопка Зона покрытия).

Выполнив вышеперечисленные действия, над картой будут выведены все необходимые данные для точной настройки спутниковой тарелки. От места установки антенны, будет проведена линия направления на спутник. В случае, если настройка на выбранный спутник в данном месте не возможна, появится надпись “Прием сигнала с данного спутника в выбранном месте не возможен!”

Настройка спутниковой антенны:

  1. Соберите спутниковую антенну, согласно прилагаемой инструкции, установите на нее конвертор (если используется конвертор линейной поляризации, его необходимо повернуть на требуемый угол, для конвертора круговой поляризации данная настройка не нужна). Закрепите кронштейн на место установки и навесьте на него антенну.

  2. Произведите приблизительную настройку антенны в горизонтальной плоскости — направив антенну в сторону заранее выбранного на карте объекта (объект удобно выбирать на линии направления на спутник).

    Если настройка производится по компасу поверните антенну на угол равный значению параметра “Магнитный азимут” (поворот осуществляется по часовой стрелке от направления на Север).

    Если во время установки у Вас нет возможности воспользоваться компасом (или установка по компасу не возможна из-за магнитных аномалий), а на спутниковой карте отсутствуют явные ориентиры для настройки, можно осуществить настройку по солнцу.

    Для этого необходимо нажать на кнопку Направление на солнце, после чего на карте будет построена линия от места установки в направлении на солнце (построение производится для текущего времени и меняется в течение дня).

    Определив разницу углов между направлением на солнце и на спутник, произведите настройку антенны (во время установки удобно ориентироваться по тени).

  3. Установите угол наклона спутниковой тарелки равный параметру “Угол места”. Если используется офсетная антенна, не забудьте вычесть офсетный угол.

    Значение офсетного угла можно взять из документации на спутниковую антенну или с сайта производителя, обычно он находится в пределах 18°-27°.

    Не пугайтесь, если в процессе монтажа у Вас получилось, что антенна направлена в сторону земли, для офсетных тарелок это вполне обычное явление.

  4. Если для настройки на спутник Вы не используете специальных приборов, то подключите к антенне спутниковый ресивер. На экране телевизора, в настройках спутникового приемника будет выведено две шкалы “Сила сигнала” (Уровень сигнала) и “Качество сигнала”.

    Медленно поворачивайте антенну в горизонтальной плоскости влево и вправо на 10°-15°, стараясь добиться значения шкалы “Качество сигнала” более 70.

    Если после поворота антенны добиться данного значения не удалось (или значение “Качество сигнала” вообще не изменилось) измените наклон антенны в вертикальной плоскости на пару градусов и повторите вышеперечисленные действия.

Источник: https://www.mapsat.ru/

На какой высоте летают спутники, расчет орбиты, скорость и направление движения

Как определить высоту спутника...

Подобно тому, как места в театре позволяют по-разному взглянуть на представление, различные орбиты спутников дают перспективу, каждая из которых имеет свое назначение. Одни кажутся висящими над точкой поверхности, они обеспечивают постоянный обзор одной стороны Земли, в то время как другие кружат вокруг нашей планеты, за день проносясь над множеством мест.

Типы орбит

На какой высоте летают спутники? Различают 3 типа околоземных орбит: высокие, средние и низкие. На высокой, наиболее удаленной от поверхности, как правило, находятся многие погодные и некоторые спутники связи.

Сателлиты, вращающиеся на средней околоземной орбите, включают навигационные и специальные, предназначенные для мониторинга конкретного региона.

Большинство научных космических аппаратов, в том числе флот системы наблюдения за поверхностью Земли НАСА, находится на низкой орбите.

От того, на какой высоте летают спутники, зависит скорость их движения. По мере приближения к Земле гравитация становится все сильнее, и движение ускоряется.

Например, спутнику НАСА Aqua требуется около 99 минут, чтобы облететь вокруг нашей планеты на высоте около 705 км, а метеорологическому аппарату, удаленному на 35 786 км от поверхности, для этого потребуется 23 часа, 56 минут и 4 секунды.

На расстоянии 384 403 км от центра Земли Луна завершает один оборот за 28 дней.

Аэродинамический парадокс

Изменение высоты спутника также изменяет его скорость движения по орбите. Здесь наблюдается парадокс. Если оператор спутника хочет повысить его скорость, он не может просто запустить двигатели для ускорения.

Это увеличит орбиту (и высоту), что приведет к уменьшению скорости. Вместо этого следует запустить двигатели в направлении, противоположном направлению движения спутника, т. е. совершить действие, которое на Земле бы замедлило движущееся транспортное средство.

Такое действие переместит его ниже, что позволит увеличить скорость.

В дополнение к высоте, путь движения спутника характеризуется эксцентриситетом и наклонением. Первый относится к форме орбиты. Спутник с низким эксцентриситетом движется по траектории, близкой к круговой. Эксцентричная орбита имеет форму эллипса. Расстояние от космического аппарата до Земли зависит от его положения.

Наклонение – это угол орбиты по отношению к экватору. Спутник, который вращается непосредственно над экватором, имеет нулевой наклон. Если космический аппарат проходит над северным и южным полюсами (географическими, а не магнитными), его наклон составляет 90°.

Все вместе – высота, эксцентриситет и наклонение – определяют движение сателлита и то, как с его точки зрения будет выглядеть Земля.

Высокая околоземная

Когда спутник достигает ровно 42164 км от центра Земли (около 36 тыс. км от поверхности), он входит в зону, где его орбита соответствует вращению нашей планеты.

Поскольку аппарат движется с той же скоростью, что и Земля, т. е. его период обращения равен 24 ч, кажется, что он остается на месте над единственной долготой, хотя и может дрейфовать с севера на юг.

Эта специальная высокая орбита называется геосинхронной.

Спутник движется по круговой орбите прямо над экватором (эксцентриситет и наклонение равны нулю) и относительно Земли стоит на месте. Он всегда расположен над одной и той же точкой на ее поверхности.

Геостационарная орбита чрезвычайно ценна для мониторинга погоды, так как спутники на ней обеспечивают постоянный обзор одного и того же участка поверхности. Каждые несколько минут метеорологические аппараты, такие как GOES, предоставляют информацию об облаках, водяном паре и ветрах, и этот постоянный поток информации служит основой для мониторинга и прогнозирования погоды.

Кроме того, геостационарные аппараты могут быть полезны для коммуникации (телефонии, телевидения, радио). Спутники GOES обеспечивают работу поисково-спасательного радиомаяка, используемого для помощи в поиске кораблей и самолетов, терпящих бедствие.

Наконец, многие высокоорбитальные сателлиты Земли занимаются мониторингом солнечной активности и отслеживают уровни магнитного поля и радиации.

Вычисление высоты ГСО

На спутник действует центростремительная сила Fц=(M1v2)/R и сила тяжести Fт=(GM1M2)/R2. Так как эти силы одинаковы, можно уравнять правые части и сократить их на массу M1. В результате получится равенство v2=(GM2)/R. Отсюда скорость движения v=((GM2)/R)1/2

Так как геостационарная орбита представляет собой окружность длиной 2πr, орбитальная скорость равна v=2πR/T.

Отсюда R3=T2GM/(4π2).

Так как T=8,64×104с, G=6,673×10-11 Н·м2/кг2, M=5,98×1024 кг, то R=4,23×107 м. Если вычесть из R радиус Земли, равный 6,38×106 м, можно узнать, на какой высоте летают спутники, висящие над одной точкой поверхности – 3,59×107 м.

Точки Лагранжа

Другими замечательными орбитами являются точки Лагранжа, где сила притяжения Земли компенсируется силой тяжести Солнца. Все, что там находится, в равной степени притягивается к этим небесным телам и вращается с нашей планетой вокруг светила.

Из пяти точек Лагранжа в системе Солнце-Земля только две последних, называемых L4 и L5, являются стабильными.

В остальных спутник подобен мячу, балансирующему на вершине крутого холма: любое незначительное возмущение будет выталкивать его.

Чтобы оставаться в сбалансированном состоянии, космические аппараты здесь нуждаются в постоянной корректировке. В последних двух точках Лагранжа спутники уподобляются шару в шаре: даже после сильного возмущения они вернутся обратно.

L1 расположена между Землей и Солнцем, позволяет сателлитам, находящимся в ней, иметь постоянный обзор нашего светила. Солнечная обсерватория SOHO, спутник НАСА и Европейского космического агентства следят за Солнцем из первой точки Лагранжа, в 1,5 млн км от нашей планеты.

L2 расположена на том же расстоянии от Земли, но находится позади нее. Спутникам в этом месте требуется только один тепловой экран, чтобы защититься от света и тепла Солнца. Это хорошее место для космических телескопов, используемых для изучения природы Вселенной путем наблюдения фона микроволнового излучения.

Третья точка Лагранжа расположена напротив Земли с другой стороны Солнца, так что светило всегда находится между ним и нашей планетой. Спутник в этом положении не будет иметь возможность общаться с Землей.

Чрезвычайно стабильны четвертая и пятая точки Лагранжа в орбитальной траектории нашей планеты в 60° впереди и позади Земли.

Средняя околоземная орбита

Находясь ближе к Земле, спутники двигаются быстрее. Различают две средние околоземные орбиты: полусинхронную и «Молнию».

На какой высоте летают спутники, находящиеся на полусинхронной орбите? Она почти круглая (низкий эксцентриситет) и удалена на расстояние 26560 км от центра Земли (около 20200 км над поверхностью).

Сателлит на этой высоте совершает полный оборот за 12 ч. По мере его движения Земля вращается под ним. За 24 ч он пересекает 2 одинаковые точки на экваторе. Эта орбита последовательна и весьма предсказуема.

Используется системой глобального позиционирования GPS.

Орбита «Молния» (наклонение 63,4°) используется для наблюдения в высоких широтах. Геостационарные спутники привязаны к экватору, поэтому они не подходят для дальних северных или южных регионов.

Эта орбита весьма эксцентрична: космический аппарат движется по вытянутому эллипсу с Землей, расположенной близко к одному краю. Так как спутник ускоряется под действием силы тяжести, он движется очень быстро, когда находится близко к нашей планете.

При удалении его скорость замедляется, поэтому он больше времени проводит на вершине орбиты в самом дальнем от Земли краю, расстояние до которого может достигать 40 тыс. км. Период обращения составляет 12 ч, но около двух третей этого времени спутник проводит над одним полушарием.

Подобно полусинхронной орбите сателлит проходит по одному и тому же пути через каждые 24 ч. Используется для связи на крайнем севере или юге.

Низкая околоземная

Большинство научных спутников, многие метеорологические и космическая станция находятся на почти круговой низкой околоземной орбите. Их наклон зависит от того, мониторингом чего они занимаются. TRMM был запущен для мониторинга осадков в тропиках, поэтому имеет относительно низкое наклонение (35°), оставаясь вблизи экватора.

Многие из спутников системы наблюдения НАСА имеют почти полярную высоконаклонную орбиту. Космический аппарат движется вокруг Земли от полюса до полюса с периодом 99 мин. Половину времени он проходит над дневной стороной нашей планеты, а на полюсе переходит на ночную.

По мере движения спутника под ним вращается Земля. К тому времени, когда аппарат переходит на освещенный участок, он находится над областью, прилегающей к зоне прохождения своей последней орбиты. За 24-часовой период полярные спутники покрывают большую часть Земли дважды: один раз днем и один раз ночью.

Солнечно-синхронная орбита

Подобно тому как геосинхронные спутники должны находиться над экватором, что позволяет им оставаться над одной точкой, полярно-орбитальные имеют способность оставаться в одном времени.

Их орбита является солнечно-синхронной – при пересечении космическим аппаратом экватора местное солнечное время всегда одно и то же. Например, спутник Terra пересекает его над Бразилией всегда в 10:30 утра.

Следующее пересечение через 99 мин над Эквадором или Колумбией происходит также в 10:30 по местному времени.

Солнечно-синхронная орбита необходима для науки, так как позволяет сохранять угол падения солнечного света на поверхность Земли, хотя он будет меняться в зависимости от сезона.

Такое постоянство означает, что ученые могут сравнивать изображения нашей планеты одного времени года в течение нескольких лет, не беспокоясь о слишком больших скачках в освещении, которые могут создать иллюзию изменений.

Без солнечно-синхронной орбиты было бы сложно отслеживать их с течением времени и собирать информацию, необходимую для изучения изменений климата.

Путь спутника здесь очень ограничен. Если он находится на высоте 100 км, орбита должна иметь наклон 96°. Любое отклонение будет недопустимым. Поскольку сопротивление атмосферы и сила притяжения Солнца и Луны изменяют орбиту аппарата, ее необходимо регулярно корректировать.

Выведение на орбиту: запуск

Запуск спутника требует энергии, количество которой зависит от расположения места старта, высоты и наклона будущей траектории его движения. Чтобы добраться до удаленной орбиты, требуется затратить больше энергии. Спутники со значительным наклоном (например, полярные) более энергозатратны, чем те, которые кружат над экватором.

Выведению на орбиту с низким наклоном помогает вращение Земли. Международная космическая станция движется под углом 51,6397°. Это необходимо для того, чтобы космическим челнокам и российским ракетам было легче добраться до нее. Высота МКС – 337–430 км.

Полярные спутники, с другой стороны, от импульса Земли помощи не получают, поэтому им требуется больше энергии, чтобы подняться на такое же расстояние.

Корректировка

После запуска спутника необходимо приложить усилия, чтобы удержать его на определенной орбите. Поскольку Земля не является идеальной сферой, ее гравитация в некоторых местах сильнее.

Эта неравномерность, наряду с притяжением Солнца, Луны и Юпитера (самой массивной планеты Солнечной системы), изменяет наклон орбиты. На протяжении всего своего срока службы положение спутников GOES корректировалось три или четыре раза.

Низкоорбитальные аппараты НАСА должны регулировать свой наклон ежегодно.

Кроме того, на околоземные спутники оказывает воздействие атмосфера. Самые верхние слои, хотя и достаточно разрежены, оказывают достаточно сильное сопротивление, чтобы притягивать их ближе к Земле. Действие силы тяжести приводит к ускорению спутников. Со временем они сгорают, по спирали опускаясь все ниже и быстрее в атмосферу, или падают на Землю.

Атмосферное сопротивление сильнее, когда Солнце активно. Так же, как воздух в воздушном шаре расширяется и поднимается при нагревании, атмосфера поднимается и расширяется, когда Солнце дает ей дополнительную энергию.

Разреженные слои атмосферы поднимаются, а их место занимают более плотные. Поэтому спутники на орбите Земли должны изменять свое положение примерно четыре раза в год, чтобы компенсировать сопротивление атмосферы.

Когда солнечная активность максимальна, положение аппарата приходится корректировать каждые 2-3 недели.

Космический мусор

Третья причина, вынуждающая менять орбиту – космический мусор. Один из коммуникационных спутников Iridium столкнулся с нефункционирующим российским космическим аппаратом. Они разбились, образовав облако мусора, состоящее из более чем 2500 частей. Каждый элемент был добавлен ​​в базу данных, которая сегодня насчитывает свыше 18000 объектов техногенного происхождения.

НАСА тщательно отслеживает все, что может оказаться на пути спутников, т. к. из-за космического мусора уже несколько раз приходилось менять орбиты.

Инженеры центра управления полетами отслеживают положение космического мусора и сателлитов, которые могут помешать движению и по мере необходимости тщательно планируют маневры уклонения. Эта же команда планирует и выполняет маневры по регулировке наклона и высоты спутника.

Источник: https://FB.ru/article/249141/na-kakoy-vyisote-letayut-sputniki-raschet-orbityi-skorost-i-napravlenie-dvijeniya

Определение высоты вершин над уровнем моря или глубины океанов и морей

Как определить высоту спутника...

Когда идет речь о просмотре Google карт, иногда упоминается режим «карта/рельеф», в котором неровности суши выделяются изменением цветовых тонов. В этом режиме карты, четко различаются долины и горные хребты, с нанесенными уровнями высоты. Но если нужно определить по рисунку на карте высоту в определенной точке, или высоту над уровнем моря в долине — сделать это достаточно сложно.

Поэтому воспользуемся вспомогательной программой для карт Google, которая определяет не только географические координаты (долготу и широту), но и высоту над уровнем моря. Эту карту можно переключить в режим «рельеф», найти нужную вершину и определить ее высоту.

С помощью этой онлайн — программы можно не только определять высоту горных вершин. Если раньше вы никогда не интересовались, на какой высоте над уровнем моря находится местность, в которой вы живете, тогда вы будете удивлены результатами своих измерений на карте.

Как и Google карта программа Google Земля также умеет определять высоту местности над уровнем моря. В этой программе определение высоты происходит динамически для координат находящихся под указателем мыши.

Для информации. Определять высоту над уровнем моря можно с помощью барометра-анероида, который покажет 760 миллиметров ртутного столба на нулевой высоте при температуре 15 °C. На высоте в 500 метров над уровнем моря барометр будет показывать 720 мм, 1000 метров — 670 мм рт ст и так дальше.

С повышением высоты над уровнем моря падает атмосферное давление (the atmospheric pressure) примерно на 8 мм рт. ст. на каждые 100 метров подъема. И чем больше высота, тем меньше атмосферное давление и концентрация кислорода в воздухе. К примеру, на высоте 3500 м.

атмосферное давление в 1,5 раза меньше, чем на нулевой высоте, соответственно и меньше насыщенность воздуха кислородом.

Для некоторых людей высота в 800 метров уже отражается на самочувствии. Поэтому планируя по карте со спутника маршрут путешествия, необходимо обращать внимание и на высоту местности. С другой стороны, есть множество высокогорных курортов, расположенных выше, чем 1500 метров над уровнем моря.

На снимке Google Земля указано расположение на экране блока отображения текущей информации о высоте над уровнем моря. В опциях программы, блок 3D View/Units of Measurement содержит выбор единиц измерения метры/километры или футы/мили.

Конечно, можно определить высоту с помощью барометра-анероида, GPS навигатора, или одновременно использовать и то и другое как два разных устройства или как два устройства в одном, например, смартфон Samsung Galaxy Nexus , в котором встроен и GPS навигатор и барометр.

Но недостаток в том, что такие измерения высоты или определение GPS координат нужно делать непосредственно в измеряемой местности и иметь в распоряжении эти устройства. А если вам только предстоит путешествие или вы делаете измерения высоты для расширения собственного кругозора, тогда проще всего будет воспользоваться Google Земля или спутниковой картой .

Ведь в этом случае для того, чтобы определить высоту, достаточно просто кликнуть в найденной на спутниковой карте точке.

Еще один довод в пользу измерения по карте — для определения географических координат и высоты над уровнем моря нет необходимости в самостоятельном определении и вычисления значений с помощью барометра, таблиц или формул. Ведь для человека не связанного с необходимостью в точных метрологических измерениях, результата, определяемого по спутниковой карте вполне достаточно.

Но если вам нужно конкретно определить высоту, на которой расположен офис, квартира или крыша дома над уровнем моря, тогда придется делать измерения самостоятельно. Определять высоту над уровнем моря по спутниковой карте можно любой местности на Земле, но высоту сооружений определить нельзя.

Даже если будет выбрано конкретное здание, вы получите информацию только о высоте местности. И еще.

Если найдена точка на планете, которая в сервисе Google не имеет данных о высоте над уровнем моря, тогда программа рассчитывает среднее значение, вычисленное от четырех ближайших координат, для которых высота определена. Но отклонение от действительного значения может быть незначительным.

Следует обратить внимание также на то, что с помощью указанного сервиса можно также определять и глубины океанов и морей. В данном случае вычисленная высота будет представлена с отрицательными значениями, то есть, определена глубина.

Координаты для информации:
Участок суши, который ниже уровня моря
Иордания, Мертвое море 31.324755414388168,35.48899363183591
самые высокие горы

Источник: https://3planeta.com/info-google-maps/izmerit-vusoty-po-karte-ru.html

Высота полета спутников и космических кораблей над землей

Как определить высоту спутника...

Первый искусственный спутник Земли был запущен в 1957 году. С тех пор человечество сделало огромный технологический прорыв. На данный момент на околоземной орбите находится несколько десятков тысяч спутников.

Они обеспечивают жителей планеты сотовой связью, интернетом, GPS-данными, телевидением, принимают активное участие в научно-исследовательской работе. Также они используются для военных целей. В зависимости от целевого назначения выбирается, на какой высоте летают спутники.

Все это значительно облегчило жизнь, позволило поднять уровень связи. Наибольший вклад они внесли в науку – изучение строение атмосферы Земли, погодных изменений, космоса, небесных тел.

Какие виды спутников встречаются на орбите?

К искусственным спутникам Земли относятся все тела, которые были выведены на орбиту при помощи ракеты носителя. Сюда можно отнести шаттлы, космические станции, исследовательские лаборатории, автономные аппараты. Именно непилотируемые спутники являются главными поставщиками связи и научных данных.

Такие аппараты не требуют наличия экипажа, обслуживания, специальных отсеков для обеспечения жизнедеятельности. Классифицируются искусственные спутники Земли по своему прямому назначению:

  • Научно-исследовательские. Применяются в целях изучения строения атмосферы, космоса.

    Могут нести на своем борту телескоп для изучения удаленных планет;

  • Прикладные. Предназначены для удовлетворения нужд населения, испытания оборудования, систем связи.

Спутники выполняют свои функции автономно, не используют топливо.

Мониторинг состояния и необходимое маневрирование выполняется из командных центров на Земле. В зависимости от своего назначения, спутники снабжаются необходимым оборудованием и системой связи.

Объем аппарата напрямую зависит от его функциональности и назначения. Встречаются спутники с массой от 20 кг до нескольких сотен тонн. Первый аппарат, запущенный СССР весил всего 28 килограмм и нес на борту только систему радиопередачи.

На какой высоте летают спутники?

Выведение на орбиту спутника осуществляется при помощи многоступенчатой ракеты. Принцип действия прост – аппарат выталкивается из атмосферы с такой силой, которой хватит для задания траектории полета. Движется вокруг планеты он за счет силы притяжения. Комплектацией предусмотрена установка маневровых двигателей для корректировки траектории.

Они позволяют избегать столкновения с космическим мусором, другими спутниками.

Движение осуществляется на заданной орбите. Удаленность от планеты зависит от назначения аппарата, заданной траектории. Используется несколько видов орбит:

  • Околоземная или низкая. Обеспечивает наиболее приближенное расположение.

    Высота составляет 300-500 км над уровнем моря. Использовалась для работы первых космических аппаратов, сейчас там находятся аппараты для дистанционного зондирования земной поверхности и атмосферы;

  • Полярная. Расположена в плоскости полярных полюсов Земли. Угол наклона близок к 90 градусам.

    Из-за сплюснутости планеты, можно добиться различной скорости вращения, которая позволит проходить спутнику одну и ту же широту в одинаковое время;

  • Геостационарная. Высота на ней составляет от 35 000 км, расположена в плоскости экватора.

    Устойчивых точек всего две, на остальном пути необходимо поддерживать траекторию искусственно;

  • Сильноэллиптическая. Контур орбиты представляет собой эллипс. Высота меняется в зависимости от точки траектории. Благодаря большому размеру, позволяет поддерживать необходимое количество спутников одновременно над одной страной.

    Используется преимущественно в телекоммуникационных целях. Также здесь работают аппараты с телескопами для изучения отдаленных объектов;

  • Круглая. Сечение орбиты представляет собой круг. Показатель высоты близок к постоянному в любой момент времени.

Высота полета спутников над Землей задается на основании их целевого назначения и выбранной орбиты. Геостационарная орбита является наиболее важной и дорогой. Поэтому аппараты, выработавшие свой ресурс, удаляются с нее. Используется в основном в научных целях.

Для систем глобального позиционирования используются круглые орбиты с постоянной высотой. Такая траектория является оптимальной для передачи сигнала. Высота орбиты спутников GPS составляет 20 тысяч километров. Один аппарат за сутки совершает два витка вокруг планеты. Скорость позволяет использовать 4 спутника в одной плоскости для обеспечения постоянной передачи данных.

На какой высоте летают космические корабли?

Главное отличие пилотируемых аппаратов – необходимость поддержание жизнедеятельности и возвращения экипажа. Поэтому высота полета кораблей значительно ниже. Пилотируемые станции используются для проведения научных исследований, изучения влияния невесомости, открытого космоса, наблюдения за космическими телами.

Первый пилотируемый космический корабль был запущен в 1961 году.

Движение осуществлялось по эллиптической орбите. Перигей составлял 175 км, а апогей – 320 км над уровнем моря. За прошедшие полвека исследований высота значительно увеличилась из-за присутствия большого количества космического мусора на околоземной орбите. На данный момент используется орбита с перигеем в 400 км.

Обусловлено это также и отсутствием влияния атмосферы на траекторию движения.

Источник: https://www.techcult.ru/advertise/5035-na-kakoj-vysote-letayut-sputniki

Biz-books
Добавить комментарий