Как определить сопротивление катушки индуктивности…

Содержание
  1. Катушки индуктивности: расчет по формулам
  2. Конструкция
  3. Принцип действия
  4. Вычисление
  5. Индуктивное реактивное сопротивление: формулы, схемы
  6. Введение
  7. Схема индуктивности переменного тока
  8. Векторная диаграмма индуктора переменного тока
  9. Индуктивное сопротивление от частоты
  10. Питание от сети переменного тока серии LR
  11. Цепь переменного тока серии LR
  12. Треугольник сопротивления
  13. Силовой треугольник индуктора переменного тока
  14. Индуктивное сопротивление
  15. Формулы, зависимости и виды индуктивности
  16. Сопротивление катушки переменному току
  17. Расчёт индуктивного сопротивления катушки
  18. Где применяется катушка (дроссель, индуктивность)
  19. Катушка как электромагнит
  20. Индуктивность как фильтр
  21. Катушка как источник ЭДС
  22. Две катушки – трансформатор
  23. Катушка индуктивности — элемент колебательного контура
  24. Катушка индуктивности – дроссель ДРЛ ламп
  25. Катушка индуктивности
  26. Индуктивность
  27. Самоиндукция
  28. Типы катушек индуктивности
  29. Дроссели
  30. Опыты с катушкой
  31. Последовательное и параллельное соединение катушек
  32. Резюме
  33. Реактивное сопротивление XL и XC
  34. Реактивное сопротивление катушки индуктивности
  35. Реактивное сопротивление конденсатора
  36. Онлайн-калькулятор расчёта реактивного сопротивления
  37. Расчитать ёмкость или индуктивность для реактивного сопротивления:
  38. Измерение параметров катушек индуктивности
  39. Индикация короткозамкнутых витков
  40. Измерение индуктивностей методом вольтметра — амперметра
  41. Сопротивление катушки индуктивности: какое активное сопротивление катушки
  42. Что такое катушка индуктивности
  43. Для чего она нужна и где используется
  44. Свойства катушки
  45. Конструкция катушки
  46. Активное сопротивление катушки

Катушки индуктивности: расчет по формулам

Как определить сопротивление катушки индуктивности...

Для того, чтобы создать магнитное поле и сгладить в нем помехи и импульсы, используются специальные накопительные элементы. Катушки индуктивности в цепи переменного тока и постоянного применяются для накопления определенного количества энергии и ограничения электричества.

Конструкция

Главное назначение катушек индуктивности ГОСТ 20718-75 – это накопление электрической энергии в пределах магнитного поля для акустики, трансформаторов и т. д. Их используют для разработки и конструирования различных селективных схем и электрических устройств.

От конструкции (материала, количества витков), наличия каркаса зависит их функциональность, размеры и область использования. Изготовление устройств производится на заводах, но можно сделать их самостоятельно.

Самодельные элементы несколько уступают по надежности профессиональным, но обходятся в разы дешевле.

Фото — схема

Каркас катушки индуктивности выполняется из диэлектрического материала. На него наматывается изолированный проводник, который может быть как одножильным, так и многожильным. В зависимости от типа намотки, они бывают:

  1. Спиральными (на ферритовом кольце);
  2. Винтовыми;
  3. Винтоспиральными или комбинированными.

Примечательной особенностью катушки индуктивности для электрических схем является то, что её можно намотать как в несколько слоев, так и нированно, т. е.

, с обрывками Если используется толстый проводник, то элемент может обматываться без каркаса, если тонкий – то только на рамку. Эти каркасы катушек индуктивности бывают различного сечения: квадратные, круглые, прямоугольные.

Полученная намотка может вставляться в специальный корпус какого-либо электрического устройства или использоваться в открытом виде.

Фото — конструкция самодельного элемента

Для увеличения индуктивности используются сердечники. В зависимости от назначения элемента, варьируется используемый материал стержня:

  1. С ферромагнитным и воздушным сердечником применяются при высоких частотах тока;
  2. Стальные используются в условиях низкого напряжения.

Вместе с этим, в электротехнике активно используются индуктивные классические катушки без сердечника, которые можно сделать своими руками при помощи намотки на немагнитный контур.Такие устройства имеют некоторые преимущества перед «сердечными». У них большая линейность импеданса. Но, у тороидальной модели намотка на немагнитный каркас способствует появлению паразитной емкости.

Исходя из принципа работы, бывают такие типы:

  1. Контурные. Преимущественно используются в радиотехнике для создания колебательных контуров платы, работают вместе с конденсаторами. Для соединения используется последовательное подключение. Это современный вариант плоской контурной катушки Тесла;
  2. Вариометры. Это высокочастотные перестраиваемые катушки, индуктивностью которыми можно при необходимости управлять при помощи дополнительных устройств. Они представляют собой соединение двух отдельных катушек, при этом, одна подвижна, а вторая нет;
  3. Сдвоенные и подстроечные дроссели. Основные характеристики этих катушек: малое сопротивление постоянному току и высокое переменному. Дроссели изготавливаются из нескольких катушек, соединенных обмотками между собой. Их часто используют в виде фильтра для различных радиотехнических приборов, устанавливают для контроля помех в антенны и т. д.;
  4. Трансформаторы связи. Их конструктивной особенностью является то, что на одном стержне установлено от двух и более катушек. Они используются в трансформаторах для обеспечения определенной связи между отдельными компонентами устройства.

Маркировка катушек индуктивности определяется по количеству витков и цвету корпуса.

Фото — маркировка

Принцип действия

Схема работы катушек индуктивности активного действия основан на том, что каждый отдельный виток намотки пересекается с магнитными силовыми линиями.

Этот электрический элемент необходим для того, чтобы извлекать электрическую энергию из источника питания и преобразовывая её сохранять в виде электрического поля. Соответственно, если ток цепи увеличивается – то расширяется и магнитное поле, но если он уменьшается – поле будет неизменно сжиматься.

Эти параметры также зависят от частоты и напряжения, но в целом, действие остается неизменным. Включение элемента производит сдвиг фаз тока и напряжения.

Фото — принцип работы

Помимо этого, индуктивные (каркасные и бескаркасные) катушки обладают свойством самоиндукции, его расчет производится исходя из данных номинальной сети.

В многослойной и однослойной обмотке создается напряжение, которое противоположно напряжению электрического тока. Это называется ЭДС, определение электродвижущей магнитной силы зависит от показателей индуктивности. Её можно рассчитать по закону Ома.

Стоит отметить, что независимо от напряжения сети, сопротивление в катушке индуктивности не изменяется.

Фото — соединение отдельных выводов элементов

Связь индуктивности и понятия (изменения) ЭДС можно найти по формуле εc = — dФ/dt = — L*dI/dt, где ε – это значение ЭДС самоиндукции. И если скорость изменения электрической энергии будет равна dI/dt = 1 A/c, то и L = εc.

: расчет катушки индуктивности

Вычисление

Основные характеристики катушки индуктивности: добротность, индуктивность, потери, резонанс, паразитарная емкость и ЭДС. Также прибор зависит от ТИК – температурного коэффициента.

Для того чтобы рассчитать различные параметры, используются специальные физические формулы. К примеру, простейший колебательный контур состоит из катушки и конденсатора, он рассчитывается по следующей формуле:

Формула — формула колебательного контура

Где L – это сам элемент, накапливающая магнитную энергию.

В это же время, период свободных колебаний этого контура вычисляется по:

Формула — период свободных колебаний

Где C – это конденсатор, реактивный элемент схемы, отдающий накапливающий электрическую энергию конкретной цепи. Величина индуктивного сопротивления в такой цепи вычисляется по XL = U/I. Здесь X – это емкостное сопротивление. При расчете резистора в пример вставляются основные параметры этого элемента.

Индуктивность соленоида определяет формула:

Формула — индуктивность катушки-соленоида

Помимо этого, уровень индуктивности имеет определенную зависимость от температуры на плате. Параллельное подключение нескольких деталей, изменение плотности и размеров витков обмотки и прочие параметры влияют на основные свойства этого элемента.

Фото — зависимость от температуры

Чтобы узнать параметры катушки индуктивности, можно использовать различные методы: измерить мультиметром, испытать на осциллографы, проверить отдельно амперметром или вольтметром.

Эти варианты очень удобны тем, что в них в качестве реактивных элементов применяются конденсаторы, электропотери которых очень малы и могут не учитываться в расчетах. Иногда с целью упростить задачу применяется специальная программа расчета и измерения нужных параметров.

Это позволяет значительно упростить выбор нужных элементов для схем.

Купить катушки индуктивности (SMD 150 мкГн и другие) и провода для их намотки можно в любом электротехническом магазине, их цена варьируется от 2 долларов до нескольких десятков.

Источник: https://www.asutpp.ru/katushki-induktivnosti.html

Индуктивное реактивное сопротивление: формулы, схемы

Как определить сопротивление катушки индуктивности...

В данной статье мы подробно поговорим про индуктивное сопротивление, реактивное сопротивление и треугольники напряжения, сопротивления и силы.

Введение

Итак, мы рассмотрели поведение индукторов, подключенных к источникам постоянного тока, и, надеюсь, теперь мы знаем, что когда на индуктор подается постоянное напряжение, рост тока через него происходит не мгновенно, а определяется индуктором, индуцированным самим индуктором или обратным значением ЭДС.

Также мы видели, что ток индукторов продолжает расти, пока не достигнет своего максимального установившегося состояния после пяти постоянных времени. Максимальный ток, текущий через индукционную катушку ограничиваются только резистивной частью катушек обмотки в омах, и как мы знаем из закона Ома, это определяется отношением напряжения к току V / R .

Когда переменное напряжение подается на катушку индуктивности, поток тока через него ведет себя совершенно иначе, чем при приложении постоянного напряжения.

Эффект синусоидального питания приводит к разности фаз между напряжением и формами тока.

Теперь в цепи переменного тока противодействие току, протекающему через обмотки катушек, зависит не только от индуктивности катушки, но и от частоты сигнала переменного тока.

Сопротивление току, протекающему через катушку в цепи переменного тока, определяется сопротивлением переменного тока, более известным как полное сопротивление (Z) цепи.

Но сопротивление всегда связано с цепями постоянного тока, поэтому, чтобы отличить сопротивление постоянного тока от сопротивления переменного тока, обычно используется термин «реактивное сопротивление» .

Как и сопротивление, значение реактивного сопротивления также измеряется в омах, но ему присваивается символ X (заглавная буква «X»), чтобы отличить его от чисто резистивного значения.

Поскольку интересующий нас компонент является индуктором, реактивное сопротивление индуктора поэтому называется «Индуктивное реактивное сопротивление». Другими словами, электрическое сопротивление индуктивности при использовании в цепи переменного тока называется индуктивным сопротивлением .

Индуктивное сопротивление, которому дается символ L , является свойством в цепи переменного тока, которое противодействует изменению тока.

 В наших уроках о конденсаторах в цепях переменного тока мы видели, что в чисто емкостной цепи ток C «опережает» напряжение на 90 o .

 В чисто индуктивной цепи переменного тока верно обратное: ток L отстает от напряжения на 90 o или (π / 2 рад).

Схема индуктивности переменного тока

В приведенной выше чисто индуктивной цепи индуктор подключен непосредственно через напряжение питания переменного тока. Когда напряжение питания увеличивается и уменьшается с частотой, самоиндуцированная обратная ЭДС также увеличивается и уменьшается в катушке по отношению к этому изменению.

Мы знаем, что эта самоиндуцированная ЭДС прямо пропорциональна скорости изменения тока через катушку и имеет наибольшее значение при переходе напряжения питания от положительного полупериода к отрицательному полупериоду или наоборот в точках 0о и 180о вдоль синусоиды.

Следовательно, минимальная скорость изменения напряжения возникает, когда синусоида переменного тока пересекается при своем максимальном или минимальном пиковом уровне напряжения. В этих положениях в цикле максимальный или минимальный токи протекают через цепь индуктора, и это показано ниже.

Векторная диаграмма индуктора переменного тока

Эти формы напряжения и тока показывают, что для чисто индуктивной цепи ток отстает от напряжения на 90 o . Также можно сказать, что напряжение опережает ток на 90 o . В любом случае общее выражение заключается в том, что ток отстает, как показано на векторной диаграмме. Здесь вектор тока и вектор напряжения показаны смещенными на 90 o . Ток отстает от напряжения .

Мы можем также написать это заявление как, L  = 0 ö и I L  = -90 о по отношению к напряжению, L . Если форма волны напряжения классифицируется как синусоида, то ток L можно классифицировать как отрицательный косинус, и мы можем определить значение тока в любой момент времени как:

Где: ω в радианах в секунду, а 

t в секундах.

Поскольку ток всегда отстает от напряжения на 90 o в чисто индуктивной цепи, мы можем найти фазу тока, зная фазу напряжения или наоборот. Так что если мы знаем значение L , то L должно отставать на 90 o .

 Аналогичным образом, если мы знаем значение L, то L, следовательно, должно опережать на 90 o .

 Затем это отношение напряжения к току в индуктивном контуре будет производить уравнение, определяющее индуктивное сопротивлениеХ L катушки.

Мы можем переписать уравнение для индуктивного сопротивления в более привычную форму, которая использует обычную частоту питания вместо угловой частоты в радианах ω и это будет выглядеть так:

Где: ƒ — частота, L — индуктивность катушки и 

2πƒ = ω .

Из приведенного выше уравнения для индуктивного реактивного сопротивления можно видеть, что, если увеличить частоту, либо индуктивность, общее значение индуктивного реактивного сопротивления также увеличится. Когда частота приближается к бесконечности, реактивное сопротивление индукторов также увеличивается до бесконечности, действуя как разомкнутая цепь.

Однако, когда частота приближается к нулю или постоянному току, реактивное сопротивление индукторов будет уменьшаться до нуля, действуя как короткое замыкание. Это означает, что индуктивное сопротивление «пропорционально» частоте.

Другими словами, индуктивное реактивное сопротивление увеличивается с частотой, в результате чего L будет небольшим на низких частотах, а L будет высоким на высоких частотах, что продемонстрировано на графике ниже.

Индуктивное сопротивление от частоты

Затем мы видим, что при постоянном токе индуктор имеет нулевое реактивное сопротивление (короткое замыкание), на высоких частотах индуктор имеет бесконечное реактивное сопротивление (разомкнутая цепь).

Питание от сети переменного тока серии LR

До сих пор мы рассматривали чисто индуктивную катушку, но невозможно иметь чистую индуктивность, поскольку все катушки, реле или соленоиды будут иметь определенное сопротивление, независимо от того, насколько мало связано с витками используемого провода. Тогда мы можем рассматривать нашу простую катушку как последовательное сопротивление с индуктивностью (LR).

В цепи переменного тока, которая содержит как индуктивность L и сопротивление R, напряжение V будет векторная сумма двух компонентов напряжения, V R и V L . Это означает, что ток, протекающий через катушку еще будет отставать от напряжения, но на величину меньше чем 90 ö в зависимости от значений R и V L .

Новый фазовый угол между напряжением и током известен как фазовый угол цепи и обозначается греческим символом фи, Φ .

Чтобы получить векторную диаграмму зависимости между напряжением и током, необходимо найти эталонный или общий компонент. В последовательно соединенной цепи RL ток является общим, так как один и тот же ток течет через каждый компонент. Вектор этой эталонной величины обычно рисуется горизонтально слева направо.

Из наших руководств о резисторах и конденсаторах, мы знаем, что ток и напряжение в цепи переменного резистивного тока, оба «в фазе» и, следовательно, вектор V R рисуется с наложением на текущую или контрольную линию.

Из вышесказанного также известно, что ток «отстает» от напряжения в чисто индуктивной цепи и, следовательно, вектор L отображается на 90 o перед опорным током и в том же масштабе, что и R, это показано ниже.

Цепь переменного тока серии LR

На приведенной выше векторной диаграмме видно, что луч OB представляет текущую опорную линию, луч OA — это напряжение резистивного компонента, которое в фазе с током, луч OC показывает индуктивное напряжение, которое составляет 90 o перед током, поэтому видно, что ток отстает от напряжения на 90 o , луч OD дает нам результирующее или питающее напряжение в цепи. Треугольник напряжения выводится из теоремы Пифагора и имеет вид:

Треугольник сопротивления

В цепи постоянного тока отношение напряжения к току называется сопротивлением. Однако в цепи переменного тока это отношение известно как полное сопротивлениеZ с единицами измерения в омах. Полное сопротивление — это полное сопротивление току в «цепи переменного тока», содержащее как сопротивление, так и индуктивное сопротивление.

Если мы разделим стороны треугольника напряжения выше на ток, получим еще один треугольник, стороны которого представляют сопротивление, реактивное сопротивление и полное сопротивление катушки. Этот новый треугольник называется «Треугольник сопротивления».

Силовой треугольник индуктора переменного тока

Существует еще один тип конфигурации треугольника, который мы можем использовать для индуктивной цепи, и это «силовой треугольник».

 Мощность в индуктивной цепи называется реактивной мощностью или вольт-амперной реактивной, символ Var, который измеряется в вольт-амперах.

 В цепи переменного тока серии RL ток отстает от напряжения питания на угол Φ o .

В чисто индуктивной цепи переменного тока ток будет сдвинут по фазе на 90 o к напряжению питания.

 Таким образом, общая реактивная мощность, потребляемая катушкой, будет равна нулю, так как любая потребляемая мощность компенсируется генерируемой самоиндуцированной ЭДС-мощностью.

 Другими словами, полезная мощность в ваттах, потребляемая чистым индуктором в конце одного полного цикла, равна нулю, так как энергия берется из источника и возвращается к нему.

Реактивная мощность ( Q ) катушки может быть задана как: I 2  x X L (аналогично 2 R в цепи постоянного тока). Затем три стороны силового треугольника в цепи переменного тока представлены кажущейся мощностью ( S ), реальной мощностью ( P ) и реактивной мощностью ( Q ), как показано.

Обратите внимание, что данный индуктор или катушка будет потреблять мощность в ваттах из — за сопротивления обмоток, создающих сопротивление Z.

Источник: https://meanders.ru/induktivnoe-soprotivlenie.shtml

Индуктивное сопротивление

Как определить сопротивление катушки индуктивности...

В радиотехнике часто приходится сталкиваться с индуктивным сопротивлением. Его источником являются катушки. Они представляют собой двухполюсник, намотанный медным эмалированным проводом (обычно это ПЭТВ) на ферритовый или железный сердечник. Подобные детали встречаются в широком перечне оборудования: от древних советских радиоприёмников до материнских плат ПК последних моделей.

Формулы, зависимости и виды индуктивности

Электрическая индуктивность L – это величина, равная коэффициенту пропорциональности между током I, протекающим в замкнутом контуре, и создаваемым им магнитным потоком, иначе называемым потокосцеплением Y:

Y = LI.

Если к выводам катушки на некоторое время приложить напряжение, то в ней начнёт протекать ток I и формироваться магнитное поле. Чем меньше индуктивность L, тем быстрее протекает данный процесс. В итоге рассматриваемый двухполюсник накопит некоторое количество потенциальной энергии.

При отключении питания он будет стремиться её вернуть. В результате на выводах катушки образуется ЭДС самоиндукции E, которая многократно превышает изначально приложенное напряжение.

Подобная технология ранее использовалась в магнето систем зажигания ДВС, а сейчас широко встречается в повышающих DC-DC преобразователях.

Формула ЭДС самоиндукции, здесь t – это время, в течение которого ток I уменьшится до нуляПростой DC-DC повышающий преобразователь

Катушка (она же – дроссель) – это радиодеталь с ярко выраженной индуктивностью, ведь именно для этого её и создавали. Однако подобным свойством обладают в принципе все элементы. Например, конденсатор, резистор, кабель, просто кусок провода и даже тело человек также имеют некоторую индуктивность. В расчетах ВЧ схем это обязательно принимается во внимание.

Важно! Проводя измерение индуктивности специализированным прибором, стоит помнить, что нельзя держаться руками за оба его вывода. В противном случае показания могут измениться и будут неверными. Вызвано это включением в измеряемую цепь тела человека с его собственной индуктивностью.

Сопротивление катушки переменному току

Сопротивление тока: формула

Гораздо интереснее дела обстоят с индуктивностью в контуре переменного тока. Любая катушка содержит в себе две составляющие сопротивления:

При постоянном токе учитывается только первый фактор, а при переменном – оба. Формула индуктивного сопротивления XL катушки имеет следующий вид:

XL = 2pfL,

где:

  • p = 3.14;
  • f – частота переменного тока, Гц;
  • L – индуктивность катушки, Гн.

Полное сопротивление катушки Z, называемое импедансом, определяется, исходя из активной R и индуктивной XL составляющих.

Важно! Если катушка установлена в печатную плату, то для проверки её следует отпаять. В таком случае индуктивность будет измеряться независимо от других компонентов, что существенно повысит точность показаний прибора.

Расчёт индуктивного сопротивления катушки

Любая индуктивность, в т.ч. катушка, оказывает переменному току некоторое сопротивление. Как его рассчитать, было описано выше. Из формулы XL=2pfL видно, что сопротивление дросселя в первую очередь зависит от частоты протекающего по нему тока и его индуктивности. При этом с обоими параметрами связь прямо пропорциональная.

Частота – это характеристика внешней среды, индуктивность катушки зависит от ряда её геометрических свойств:

L=u0urN2S/l,

где:

  • u0 – магнитная проницаемость вакуума – 4p*10-7 Гн/м;
  • ur – относительная проницаемость сердечника;
  • N – количество витков дросселя;
  • S – его поперечное сечение в м2;
  • l – длина катушки в метрах.

Располагая вышеописанными формулами и информацией о материале и размерах катушки, можно достаточно точно прикинуть её индуктивное сопротивление без каких-либо измерительных приборов.

Дополнительная информация. Некоторые цифровые мультиметры имеют режим замера индуктивности. Подобная функция встречается редко, однако иногда оказывается очень полезной. Поэтому при выборе прибора стоит обратить внимание на то, способен ли он измерять индуктивность.

Где применяется катушка (дроссель, индуктивность)

От чего зависит сопротивление проводника

Дроссели имеют примитивную конструкцию: просто намотанный витками на каком-либо сердечнике проводник. В то же время в таком приборе нечему ломаться.

Также у дросселей широчайший функционал и десятки применений.

Из всего этого следует, что в какой бы точке города ни находился человек, в радиусе 1 км от него всегда будут тысячи катушек индуктивности, настолько они распространены.

Катушка как электромагнит

Самое простое применение катушки – это электромагнит. С подобным применением каждый сталкивается, заходя в подъезд. Сила, удерживающая дверь на месте и препятствующая несанкционированному доступу чужака, берётся из электромагнита. Он находится сверху.

Электрический ток, проходя по виткам катушки, создаёт вокруг неё переменное электромагнитное поле. Оно возбуждает в металлическом «бруске», расположенном на двери, вихревые токи, которые так же создают магнитное поле. В результате получаются два управляемых магнита. Они притягиваются друг к другу. Тем самым дверь надёжно удерживается на месте.

Другое применение электромагнитов в быту – индукционные плиты. Катушка наводит в металлической посуде переменный высокочастотный ток. Он, в свою очередь, своим тепловым действием разогревает кастрюлю. В промышленности нечто подобное используется для разогрева и плавки металлов. Только в таком случае применяются на порядки более высокие мощности и другие частоты тока.

Индукционный нагрев металла

Индуктивность как фильтр

Импульсные блоки питания, электрические двигатели и диммеры для регулировки яркости ламп накаливания выбрасывают в сеть большое количество искажений и помех. Вызвано это неравномерностью потребляемого тока. Для борьбы с подобными сетевыми шумами применяются специальные фильтры на основе конденсаторов и дросселей.

Данный узел представляет собой небольшую катушку из медного эмалированного провода диаметром 0,2-2 мм. Обмотка наматывается на ферритовый сердечник. Чаще всего он изготовлен в форме кольца, немного реже встречаются так называемые «гантельки».

Подобные фильтры имеются в компьютерных блоках питания, компактных люминесцентных лампах (иногда не ставят, экономят), на выходах сварочных инверторов.

Также фильтр может быть звуковым. Его задача – срезать определённый диапазон частот. Индуктивные свойства этого прибора таковы, что он хорошо проводит низкие частоты, а высокие – приглушает.

Поэтому дроссели используют для того, чтобы до динамиков дошёл только бас. По факту ослаблено будут слышны и другие частоты.

Для более эффективной работы фильтра нужны дополнительные детали: конденсаторы и операционные усилители.

Самодельный звуковой фильтр

Катушка как источник ЭДС

Китайская промышленность удивила школьников 2000-х новой игрушкой – вечным фонариком. Его не нужно было заряжать. Фонарик работал от катушки индуктивности, около которой под действием движения рук перемещался магнит. Он наводил в обмотке переменную ЭДС, которая питала осветительный прибор.

Подобное явление объясняется законом электромагнитной индукции.  Если проводник (рамка) находится в переменном электромагнитном поле, то в нём начинает наводиться электродвижущая сила. Иными словами, появляется напряжение.

Закон этот совсем неигрушечный, ведь он используется в работе генераторов на подавляющем большинстве электростанций, в том числе любые ТЭЦ, ГЭС, АЭС и ветряки. По подобному принципу работают динамомашины, питающие фары велотранспорта.

Принцип работы генератора

Две катушки – трансформатор

Ещё одно распространённое применение – это электрический трансформатор. Конструктивно он состоит из двух и более катушек, расположенных на одном железном или ферритовом сердечнике.

Подобный агрегат работает только с переменным напряжением. Если на первичную обмотку подать ток, то он создаст в сердечнике магнитный поток. Он, в свою очередь, наведёт ЭДС во вторичной обмотке.

Напряжения во входной и выходной катушках прямо зависят от количества их витков.

Таким образом, можно трансформировать 220 В из розетки в 12 В, необходимых для питания небольшой стереосистемы, или преобразовать 10 000 вольт в 220 для передачи от подстанции к жилым домам. Подобным методом можно добиться и повышения напряжения, т.е. превратить 12 В обратно в 220.

Устройство трансформатора

Катушка индуктивности — элемент колебательного контура

Сейчас это уже редкость, но раньше для подстройки нужной радиостанции использовали колебательный контур. Он состоит из двух элементов, включенных параллельно: катушки индуктивности и переменного конденсатора.

Работая в паре, они способны выделить из множества окружающих сигналов именно тот, который требуется. При попадании на антенну приёмника нужной частоты электромагнитных волн колебательный контур входит в резонанс. Процесс сопровождается лавинообразным увеличением ЭДС.

Частота, на которой это происходит, зависит от индуктивности катушки и ёмкости конденсатора.

Катушка индуктивности – дроссель ДРЛ ламп

Несмотря на то, что освещение улиц и промышленных предприятий стремительно переходит на LED светильники, по СНГ всё ещё осталось огромное количество мест, где используются устаревшие дуговые ртутные люминесцентные лампы типа ДРЛ. Более всего они распространены в мелких городах и на второстепенных улицах. Их можно узнать по характерному холодно-белому свету и долгому розжигу.

ДРЛ лампы не способны работать без пускорегулирующего дросселя. Он обладает высоким индуктивным сопротивлением и призван ограничить пусковой ток осветительного прибора. Дроссели для ламп подбираются, исходя из их мощности. Наиболее распространённые номиналы – 250, 400 и 1000 Вт. Информация о мощности указывается на самом дросселе. Там же можно найти схемы включения.

Из вышесказанного можно подчеркнуть, что катушка индуктивности является консервативным и давно освоенным на практике электронным компонентом. Однако спрос на его применение по-прежнему не спадает. Поэтому знания, необходимые для расчета катушек и их правильного включения, необходимы каждому специалисту, имеющему дело с электроникой.

Источник: https://amperof.ru/teoriya/induktivnoe-soprotivlenie.html

Катушка индуктивности

Как определить сопротивление катушки индуктивности...

Что вы себе представляете под словом “катушка” ? Ну… это, наверное, какая-нибудь “фиговинка”, на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.

Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

Индуктивность

Любая катушка индуктивности обладает индуктивностью. Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC – метра.

Что такое индуктивность?  Если через  провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:

где

В – магнитное поле, Вб

I – сила тока, А

А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение

И у нас получится вот такая картина с магнитными силовыми линиями:

Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф). Так как через катушку течет электрический ток, значит, через нее проходит ток с  Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

С научной же точки зрения, индуктивность – это способность извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля. Если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется, а если ток уменьшается , то магнитное поле сжимается.

Самоиндукция

Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.

Это противоположное напряжение называется ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки.

Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома:

где

I – сила тока в катушке , А 

U – напряжение в катушке, В 

 R – сопротивление катушки, Ом

Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.

И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности – источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.

То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть  в разы больше, чем было до размыкания  цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.

Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.

Типы катушек индуктивности

Катушки индуктивности делятся в основном на два класса: с магнитным и  немагнитным сердечником. Снизу  на фото катушка с немагнитным сердечником.

Но где у нее сердечник? Воздух – это немагнитный сердечник :-).  Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным  сердечником используется, когда индуктивность не превышает 5 миллигенри.

А вот катушки индуктивности с сердечником:

В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

Для катушек средней индуктивности используются ферритовые сердечники:

Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.

Дроссели

Также есть особый вид катушек индуктивностей. Это так называемые дроссели. Дроссель – это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.

Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств.

Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов).

На низких частотах (НЧ) они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:

Также существует еще один особый вид дросселей – это сдвоенный дроссель. Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.

Опыты с катушкой

От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов.  Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC – метр мне показывает ноль.

Имеется ферритовый сердечник

Начинаю вводить катушку в сердечник на самый край

LC-метр  показывает 21 микрогенри.

Ввожу катушку на середину феррита

35 микрогенри. Уже лучше.

Продолжаю вводить катушку на правый край феррита

20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине.  Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности  в переменных катушках индуктивности:

где

1 – это каркас катушки

2 – это витки катушки

3 – сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.

Экспериментируем дальше. Давайте попробуем сжимать и разжимать витки катушки. Для начала ставим ее в середину и начинаем сжимать витки

Индуктивность стала почти 50 микрогенри!

А давайте-ка попробуем расправим витки по всему ферриту

13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо “виток к витку”.

Убавим витки катушки в два раза. Было 24 витка, стало 12.

Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз.  Вывод: чем меньше количество витков – тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

Давайте поэкспериментируем с ферритовым кольцом.

Замеряем индуктивность

15 микрогенри

Отдалим витки катушки друг от друга

Замеряем снова

Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка  не играет никакой роли в катушке индуктивности тороидального исполнения.

Мотнем побольше витков. Было 3 витка, стало 9.

Замеряем

Офигеть! Увеличил количество витков  в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

Если верить формулам для расчета индуктивностей, индуктивность зависит от “витков в квадрате”. Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.

Последовательное и параллельное соединение катушек

При последовательном соединении индуктивностей, их общая индуктивность будет равняться сумме индуктивностей.

А при параллельном соединении получаем вот так:

При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате.

Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны.

Не ставьте на одну железную ось две и более тороидальных катушек.  Это может привести к неправильным показаниям общей индуктивности.

Резюме

Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные фильтры для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.

Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:

Источник: https://www.RusElectronic.com/katushka-induktivnosti/

Реактивное сопротивление XL и XC

Как определить сопротивление катушки индуктивности...

Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.

Элементы, обладающие реактивным сопротивлением, называют реактивными.

Реактивное сопротивление катушки индуктивности

При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.
При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении — положительна и препятствует его убыванию, оказывая таким образом сопротивление изменению тока на протяжении всего периода.

В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U, подавляющее ЭДС, равное ей по амплитуде и противоположное по знаку.

При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения, что образует расхождение во времени тока и напряжения в 1/4 периода.

Если приложить к выводам катушки индуктивности напряжение U, ток не может начаться мгновенно по причине противодействия ЭДС, равного -U, поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.

Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε), котораяпропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt).
Отсюда выразим синусоидальный ток .

Интегралом функции sin(t) будет -соs(t), либо равная ей функция sin(t-π/2).
Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1.

В результате получим выражение мгновенного значения тока со сдвигом от функции напряжения на угол π/2 (90°).

Для среднеквадратичных значений U и I в таком случае можно записать .

В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома, где в знаменателе вместо R выражение ωL, которое и является реактивным сопротивлением:

Реактивное сопротивлениие индуктивностей называют индуктивным.

Реактивное сопротивление конденсатора

Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда – накопления и отдачи энергии электрическим полем между его обкладками.

В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное. Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю.Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току, обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.

Если приложить к конденсатору напряжение U, мгновенно начнётся ток от максимального значения, далее уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума. Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.

Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt).
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2).
Тогда для синусоидального напряжения u = Uampsin(ωt) запишем выражение мгновенного значения тока следующим образом:

i = UampωCsin(ωt+π/2).

Отсюда выразим соотношение среднеквадратичных значений .

Закон Ома подсказывает, что 1/ωC есть не что иное, как реактивное сопротивление для синусоидального тока:

Реактивное сопротивление конденсатора в технической литературе часто называют ёмкостным. Может применяться, например, в организации ёмкостных делителей в цепях переменного тока.

Онлайн-калькулятор расчёта реактивного сопротивления

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Реактивное сопротивление ёмкостиXC = 1 /(2πƒC)Реактивное сопротивление индуктивностиXL = 2πƒL

Расчитать ёмкость или индуктивность для реактивного сопротивления:

Расчёт ёмкости: C = 1 /(2πƒXC)Расчёт индуктивности: L = XL /(2πƒ)

Похожие страницы с расчётами:

Расcчитать импеданс.

Расcчитать частоту резонанса колебательного контура LC.
Расcчитать реактивную мощность и компенсацию.

Источник: https://tel-spb.ru/rea.html

Измерение параметров катушек индуктивности

Как определить сопротивление катушки индуктивности...

Основным параметром, характеризующим контурные катушки, дроссели, обмотки трансформаторов является индуктивность L.

В высокочастотных цепях применяются катушки с индуктивностью от сотых долей микрогенри до десятков миллигенри; катушки, используемые в низкочастотных цепях, имеют индуктивность до сотен и тысяч генри.

Измерение индуктивности высокочастотных катушек, входящих в состав колебательных систем, желательно производить с погрешностью не более 5%; в большинстве других случаев допустима погрешность измерения до 10-20%.

Рис. 1. Эквивалентные схемы катушки индуктивности.

Каждая катушка, помимо индуктивности L, характеризуется также собственной (межвитковой) ёмкостью CL и активным сопротивлением потерь RL, распределёнными по её длине. Условно считают, что L, CL и RL сосредоточены и образуют замкнутую колебательную цепь (рис. 1, а) с собственной резонансной частотой

fL = 1/(LCL)0,5

Вследствие влияния ёмкости CL при измерении на высокой частоте f определяется не истинная индуктивность L, а действующее, или динамическое, значение индуктивности

Lд = L/(1-(2*π*f)2*LCL) = L/(1-f2/ fL2)

которое может заметно отличаться от индуктивности L, измеренной на низких частотах.

С повышением частоты возрастают потери в катушках индуктивности, обусловленные поверхностным эффектом, излучением энергии, токами смещения в изоляции обмотки и каркасе, вихревыми токами в сердечнике. Поэтому действующее активное сопротивление Rд катушки может заметно превышать её сопротивление RL, измеренное омметром или мостом постоянного тока. От частоты f зависит и добротность катушки:

QL = 2*π*f*Lд/Rд.

На рис. 1, б, представлена эквивалентная схема катушки индуктивности с учётом её действующих параметров. Так как значения всех параметров зависят от частоты, то испытание катушек, особенно высокочастотных, желательно проводить при частоте колебаний источника питания, соответствующей их рабочему режиму. При определении результатов испытания индекс «д» обычно опускают.

Для измерения параметров катушек индуктивности применяются в основном методы вольтметра — амперметра, мостовой и резонансный. Перед измерениями катушка индуктивности должна быть проверена на отсутствие в ней обрыва и короткозамкнутых витков. Обрыв легко обнаруживается с помощью любого омметра или пробника, тогда как выявление коротких замыканий требует проведения специального испытания.

Для простейших испытаний катушек индуктивности иногда используют электронно-лучевые осциллографы.

Индикация короткозамкнутых витков

Проверка на отсутствие короткого замыкания чаще всего производится помещением испытуемой катушки вблизи другой катушки, входящей в состав колебательного контура автогенератора, наличие колебаний в котором и их уровень контролируются с помощью телефонов, стрелочного, электронно-светового или иного индикатора. Катушка с короткозамкнутыми витками будет вносить в связанную с нею цепь активные потери и реактивное сопротивление, уменьшающие добротность и действующую индуктивность цепи; в результате произойдёт ослабление колебаний автогенератора или даже их срыв.

Рис. 2. Схема резонансного измерителя ёмкостей, использующего явление поглощения.

Чувствительным прибором подобного типа может служить, например, генератор, выполненный по схеме на рис. 2. Катушка с короткозамкнутыми витками, поднесённая к контурной катушке L1, будет вызывать заметное возрастание показаний микроамперметра μA.

Испытательная цепь может представлять собой настроенный на частоту источника питания последовательный контур (см.

«Радио», 72-5-54); напряжение на элементах этого контура, контролируемое каким-либо индикатором, под влиянием короткозамкнутых витков проверяемой катушки будет уменьшаться вследствие расстройки и возрастания потерь.

Возможно также использование уравновешенного моста переменного тока, одним из плеч которого в этом случае должна являться катушка связи (вместо катушки Lx); короткозамкнутые витки испытуемых катушек будут вызывать нарушение равновесия моста.

Чувствительность испытательного прибора зависит от степени связи между катушкой измерительной цепи и проверяемой катушкой, с целью её повышения желательно обе катушки насаживать на общий сердечник, который в этом случае выполняется разомкнутым.

При отсутствии специальных приборов для проверки высокочастотных катушек можно использовать радиоприёмник. Последний настраивают на какую-либо хорошо слышимую станцию, после чего вблизи одной из его действующих контурных катушек, например магнитной антенны (желательно на одной оси с нею), помещают проверяемую катушку.

При наличии короткозамкнутых витков громкость заметно уменьшится. Уменьшение громкости может иметь место и в том случае, если частота настройки приёмника окажется близкой к собственной частоте испытуемой катушки.

Поэтому во избежание ошибки испытание следует повторить при настройке приёмника на другую станцию, достаточно удалённую от первой по частоте.

Измерение индуктивностей методом вольтметра — амперметра

Метод вольтметра — амперметра применяется для измерения сравнительно больших индуктивностей при питании измерительной схемы от источника низкой частоты F = 50…1000 Гц.

Схема измерений представлена на рис. 3, а. Полное сопротивление Z катушки индуктивности рассчитывается по формуле

Z = (R2+X2)0,5 = U/I

на основе показаний приборов переменного тока V~ и mA~. Верхний (по схеме) вывод вольтметра присоединяют к точке а при Z  Za, где Zв и Za — полные входные сопротивления соответственно вольтметра V~ и миллиамперметра mA~. Если потери малы, т. е. R

Источник: http://zpostbox.ru/izmerenie_parametrov_katushek_induktivnosti.html

Сопротивление катушки индуктивности: какое активное сопротивление катушки

Как определить сопротивление катушки индуктивности...

Любая электрическая цепь включает в себя несколько компонентов – пассивных (резисторы, конденсаторы, катушки индуктивности) и активных (транзисторы, диоды, электронные лампы). Каждый из пассивных элементов обладает основными и паразитными параметрами, и разработчики всегда стремятся свести их к минимуму.

Что такое катушка индуктивности

Элемент электрической цепи, основной характеристикой которого является индуктивность, называется катушкой индуктивности.  Представляет собой несколько изолированных друг от друга витков провода.

Схема с индуктивностью

Для чего она нужна и где используется

Подобные элементы находят множество применений, но наиболее часто они используются в качестве:

  • Элементов индуктивности в слаботочных электрических цепях;
  • Реакторов в силовой электронике, в качестве элементов компенсации реактивного характера нагрузки;
  • Дросселей для сглаживания пульсаций выпрямленного или переменного тока;
  • Электромагнитов в качестве источников магнитного поля в электромагнитных реле или органах управления различных устройств;
  • Индукторов в установках индукционного нагрева;
  • Накопителя энергии в источниках преобразования напряжения;
  • Датчиков магнитных полей (магнитные головки в накопителях на жестких магнитных дисках);
  • Линий задержки сигнала;
  • Антенн для приема и передачи электромагнитных волн.

Индуктивная антенна

Свойства катушки

Устройства, которые состоят и витков провода, обладают рядом специфических свойств, среди которых можно отметить следующие:

  • Ограничение скорости изменения тока, определяемое индуктивностью;
  • Рост сопротивления при увеличении частоты протекающего тока;
  • Накапливание энергии в собственном магнитном поле;
  • Наличие ЭДС самоиндукции, пропорциональной скорости изменения тока;
  • Сдвиг фазы тока в витках от напряжения (90° в цепях синусоидального тока).

Сдвиг фазы в катушке индуктивности

Конструкция катушки

Катушки индуктивности имеют множество разновидностей по конструктивным особенностям. В основе любой конструкции лежит от одного и более витков изолированного провода.

Вам это будет интересно  Все об пайке

Различают следующие конструкции по типу обмоток:

  • Соленоидальная – длина намотки многократно превышает диаметр;
  • Тороидальная – когда соленоид свернут в форме тора.
  • Многослойная – разновидность соленоида при наличии нескольких рядов обмоток;
  • Секционированная – обмотки состоят из нескольких частей – секций;
  • С намоткой «Универсал».

Две последних разновидности используются при необходимости снижения собственной паразитной емкости.

Секционированная катушка с обмоткой «универсал»

Важно! Все перечисленные разновидности могут быть выполнены с сердечником из ферромагнитного материала для увеличения индуктивности при сохранении габаритов.

Регулировка (изменение) индуктивности производится путем:

  • Сдвига части витков в однослойных катушках;
  • Изменением положения ферромагнитного сердечника;
  • Переключением части витков;
  • Изменение взаимного расположения обмоток, соединенных последовательно (вариометры).

Активное сопротивление катушки

Активное сопротивление обуславливается омической характеристикой проводов обмотки. При работе на низких частотах, омическое сопротивление не зависит от частоты.

В мощных устройствах необходимо учитывать эффект близости, который заключается в том, что токи и образуемое ими магнитное поле вызывают вытеснение тока в проводах соседних витков.

В результате, снижается эффективное используемое сечение провода и растет его омическое сопротивление.

Обратите внимание! На высоких частотах проявляется скин-эффект, который заключается в том, что ток вытесняется в поверхностные слои провода. В результате этого снижается используемое сечение кабеля.

Для снижения скин-эффекта вместо одного проводника используют жгут из нескольких более тонких – литцендрат, либо поверхность провода покрывают слоем серебра, поскольку оно обладает наименьшим удельным сопротивлением.

Скин-эффект

В мощных электромагнитных системах (ускорители частиц) для снижения активного сопротивления, используется свойство сверхпроводимости – полное исчезновение сопротивления при охлаждении некоторых материалов ниже критической температуры.

Провод литцендрат

Во многих случаях применения катушек индуктивности следует учитывать влияние активного сопротивления обмоток. Данный параметр может отрицательно влиять не только путем снижения добротности, но и вызывать повышенный нагрев проводников обмоток в том случае, когда устройство работает с большими токами.

Источник: https://rusenergetics.ru/polezno-znat/soprotivlenie-katushki-induktivnosti

Biz-books
Добавить комментарий