Как определить работу выхода электронов из металла…

Работа выхода электронов из металлов, не металлов и неорганических соединений (Таблица)

Как определить работу выхода электронов из металла...

В металлах имеются электроны проводимости, образующие электронный газ и участвующие в тепловом движении.

Так как электроны проводимости удерживаются внутри металла, то, следовательно, вблизи поверхности существуют силы, действующие на электроны и направленные внутрь металла.

Чтобы электрон мог выйти из металла за его пределы, должна быть совершена определенная работа А против этих сил, которая получила название работа выхода электрона из металла. Эта работа, естественно, различна для разных металлов.

Потенциальная энергия электрона внутри металла постоянна и равна:

Wp = -eφ , где j – потенциал электрического поля внутри металла.

При переходе электрона через поверхностный электронный слой потенциальная энергия быстро уменьшается на величину работы выхода и становится вне металла равной нулю. Распределение энергии электрона внутри металла можно представить в виде потенциальной ямы.

В рассмотренной выше трактовке работа выхода электрона равна глубине потенциальной ямы, т.е.

Aвых = eφ

Этот результат соответствует классической электронной теории металлов, в которой предполагается, что скорость электронов в металле подчиняется закону распределения Максвелла и при температуре абсолютного нуля равна нулю. Однако в действительности электроны проводимости подчиняются квантовой статистике Ферми-Дирака, согласно которой при абсолютном нуле скорость электронов и соответственно их энергия отлична от нуля. 

Максимальное значение энергии, которой обладают электроны при абсолютном нуле, называется энергией Ферми EF . Квантовая теория проводимости металлов, основанная на этой статистике, дает иную трактовку работы выхода. Работа выхода электрона из металла равна разности высоты потенциального барьера eφ  и энергии Ферми.

Aвых = eφ' — EF

где φ' – среднее значение потенциала электрического поля внутри металла.

Таблица работа выхода электронов из простых веществ

В таблице приведены значения работы выхода электронов, относящихся к поликристаллическим образцам, поверхность которых очищена в вакууме прокаливанием или механической обработкой. Недостаточно надежные данные заключены в скобки.

ВеществоФормула веществаРабота выхода электронов (W,  эВ)
сереброAg  4,7  
алюминийAl  4,2  
мышьякAs  4,79 — 5,11  
золотоAu 4,8 
бор(4,60) 
барийBa 2,52
бериллийBe 3,92 
висмутBi 4,34
углерод (графит)4,45 — 4,81 
кальцийCa 2,76 — 3,20 
кадмийCd 4,04
церийCe 2,6 — 2,88 
кобальтCo 4,40 
хромCr 4,60
цезийCs 1,94 
медьCu 4,36 
железоFe 4,40 — 4,71 
галлийGa 3,96 — 4,16
германийGe 4,66 
гафнийHf (3,53) 
ртутьHg 4,52 
индийIn (3,60 — 4,09)
иридийIr (4,57) 
калий2,25 
лантанLa (3,3)
литийLi 2,49 
магнийMg 3,67 
марганецMn 3,76 — 3,95 
молибденMo 4,20
натрийNa 2,28 
ниобийNb 3,99
неодимNd (3,3) 
никельNi 4,91 — 5,01 
осмийOs (4,55)
свинецPb 4,05 
палладийPd (4,98) 
празеодимPr (2,7)
платинаPt 5,30 — 5,55 
рубидийRb 2,13
ренийRe 4,98 
родийRh 4,75 
рутенийRu (4,52) 
сурьмаSb 4,08 — 4,56 
скандийSc (3,2 — 3,33) 
селенSe 4,86 
кремнийSi 3,59 — 4,67 
самарийSm (3,2) 
олово (γ-форма)Sn 4,38 
олово (β-форма)Sn 4,50 
стронцийSr 2,74
танталTa 4,13 
теллурTe 4,73 
торийTh 3,35 — 3,47 
титанTi 4,14 — 4,50 
таллийTl 3,68 — 4,05 
уран3,27 — 4,32 
ванадий3,77 — 4,44 
вольфрам4,54 
цинкZn 4,22 — 4,27 
цирконийZr 3,96 — 4,16

Таблица работа выхода электронов из неорганических соединений

В таблице приведены значения работы выхода электронов, относящихся к поликристаллическим образцам, поверхность которых очищена в вакууме прокаливанием или механической обработкой. Недостаточно надежные данные заключены в скобки.

ВеществоФормула веществаРабота выхода электронов (W,  эВ)
бромистое сереброAgBr ~3,9
хлористое сереброAgCl ~4,6 
иодистое сереброAgI ~4,0 
сульфид серебраAg2S ~3,8 
триоксид бораB2O34,7 
оксид барияBaO 1,0 — 1,6 
барий вольфрамовокислыйBaWO42,27 
окись бериллияBeO 3,8 — 4,7 
окись кальцияCaO 1,8 — 2,4 
ортовольфрамат кальцияCa3WO62,13 
борид хромаCrB23,36 
окись цезияCs2O 1,0 — 1,17 
окись медиCuO 4,35 — 5,34 
закись медиCu2O 5,15 
окись железаFeO 3,85 
водаH2O 6,1 
карбид гафнияHfC 2,04 
оксид магнияMgO 3,1 — 4,4 
диборид марганцаMnB24,14 
диборид молибденаMoB23,38 
триоксид молибденаMoO34,25 
силицид молибденаMoSi25,0 — 6,0 
хлористый натрийNaCl 4,2 
борид ниобияNbB23,65 
карбид ниобияNbC 2,24 
окись никеляNiO 5,55 
борид скандияScB22,3 — 2,9 
кремнезёмSiO25,0 
окись стронцияSrO 2,0 — 2,6 
карбид танталаTaC 3,05 — 3,14 
пентаоксид танталаTa2O54,65 
дикарбид торияThC23,5 
оксид торияThO22,54 — 2,67 
сульфид титанаTiS 3,4 
диборид титанаTiB23,88 — 3,95 
карбид титанаTiC 2,35 — 3,35 
нитрид титанаTiN 2,92 
окись титанаTiO 2,96 — 3,1 
двуокись титанаTiO24,7 
карбид уранаUC 2,9 — 4,6 
диборид ванадияVB23,88 — 3,95 
диборид вольфрамаWB22,62 
диоксид вольфрамаWO24,96 
дисилицид вольфрамаWSi25,0 — 6,0 
борид цирконияZrB 4,48 
диборид цирконияZrB23,70 
карбид цирконияZrC 2,2 — 3,8 
нитрид цирконияZrN 2,92 

_______________

Источник информации:

1. Landolt-Borstein's Zahlenwerte und Funktionen aus Phsik, Chemie, Astrunumie, Geophysik, Thechnik, 6-е издание., Берлин, т. I, ч.4, 1955; т. II, ч.6, разд. 1, 1959.

2. В.С. Фоменко. Эмиссионные свойства элементов и химических соединений. Изд. АН УСССР, Киев, 1961.

Источник: https://infotables.ru/fizika/132-rabota-vykhoda-elektronov-iz-metallov-tablitsa

Вопрос. Работа выхода электрона из металла. Эмиссионные явления

Как определить работу выхода электронов из металла...

1) Формула работа выхода электронов

В металлах имеются электроны проводимости, образующие электронный газ и участвующие в тепловом движении.

Так как электроны проводимости удерживаются внутри металла, то, следовательно, вблизи поверхности существуют силы, действующие на электроны и направленные внутрь металла.

Чтобы электрон мог выйти из металла за его пределы, должна быть совершена определенная работа А против этих сил, которая получила название работа выхода электрона из металла. Эта работа, естественно, различна для разных металлов.

Потенциальная энергия электрона внутри металла постоянна и равна:

Wp = -eφ,где j – потенциал электрического поля внутри металла.

При переходе электрона через поверхностный электронный слой потенциальная энергия быстро уменьшается на величину работы выхода и становится вне металла равной нулю. Распределение энергии электрона внутри металла можно представить в виде потенциальной ямы.

В рассмотренной выше трактовке работа выхода электрона равна глубине потенциальной ямы, т.е.

Aвых = eφ

Этот результат соответствует классической электронной теории металлов, в которой предполагается, что скорость электронов в металле подчиняется закону распределения Максвелла и при температуре абсолютного нуля равна нулю. Однако в действительности электроны проводимости подчиняются квантовой статистике Ферми-Дирака, согласно которой при абсолютном нуле скорость электронов и соответственно их энергия отлична от нуля.

Максимальное значение энергии, которой обладают электроны при абсолютном нуле, называется энергией Ферми EF . Квантовая теория проводимости металлов, основанная на этой статистике, дает иную трактовку работы выхода. Работа выхода электрона из металла равна разности высоты потенциального барьера eφ и энергии Ферми.

Aвых = eφ' — EF

где φ' – среднее значение потенциала электрического поля внутри металла.

2)Работа выхода электронов из металла — работа, которую нужно затратить для удаления электрона из металла в вакуум. Работа выхода зависит от химической природы металлов и от чистоты их поверхности. Подобрав определенным образом покрытие поверхности, можно значительно изменить работу выхода.

Работа выхода выражается в электрон-вольтах (эВ):1эВ равен работе, которую совершают силы поля при перемещении элементарного электрического заряда между точками разность потенциалов между которыми равна 1В. Так как e 1,610–19 Кл, то 1эВ=1,610–19 Дж.

Электронная эмиссия —явление испускания электронов из металлов при сообщении электронам энергии, равной или большей работы выхода.

1. Термоэлектронная эмиссия — испускание электронов нагретыми металлами. Пример использования – электронные лампы.

2. Фотоэлектронная эмиссия — эмиссия электронов из металла под действием электромагнитного излучения. Пример использования — фотодатчики.

3. Вторичная электронная эмиссия — испускание электронов поверхностью металлов, полупроводников или диэлектриков при бомбардировке их пучком электронов.

Отношение числа вторичных электронов n2 к числу первичных n1 , вызвавших эмиссию, называется коэффициентом вторичной электронной эмиссии:n2 n1 .

Пример использования — фотоэлектронные умножители.

4. Автоэлектронная эмиссия — эмиссия электронов с поверхности металлов под действием сильного внешнего электрического поля.

5 Вопрос. Электрический ток в вакууме (объяснение ВАХ вакуумного диода).

Что такое вакуум?
— это такая степень разрежения газа, при которой соударений молекул практически нет;

— электрический ток невозможен, т.к. возможное количество ионизированных молекул не может обеспечить электропроводность; — создать эл.ток в вакууме можно, если использовать источник заряженных частиц;

— действие источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии.

Термоэлектронная эмиссия
— это испускание электронов твердыми или жидкими телами при их нагревании до температур, соответствующих видимому свечению раскаленного металла.

Нагретый металлический электрод непрерывно испускает электроны, образуя вокруг себя электронное облако. В равновесном состоянии число электронов, покинувших электрод, равно числу электронов, возвратившихся на него ( т.к.

электрод при потере электронов заряжается положительно).

Чем выше температура металла, тем выше плотность электронного облака.

Вакуумный диод
Электрический ток в вакууме возможен в электронных лампах.
Электронная лампа — это устройство, в котором применяется явление термоэлектронной эмиссии.

Вакуумный диод — это двухэлектродная ( А- анод и К — катод ) электронная лампа.
Внутри стеклянного баллона создается очень низкое давление

Н — нить накала, помещенная внутрь катода для его нагревания. Поверхность нагретого катода испускает электроны. Если анод соединен с + источника тока, а катод с -, то в цепи протекает постоянный термоэлектронный ток.

Вакуумный диод обладает односторонней проводимостью.

Т.е. ток в аноде возможен, если потенциал анода выше потенциала катода. В этом случае электроны из электронного облака притягиваются к аноду, создавая эл.

ток в вакууме.

Вольтамперная характеристика вакуумного диода.

При малых напряжениях на аноде не все электроны, испускаемые катодом, достигают анода, и электрический ток небольшой. При больших напряжениях ток достигает насыщения, т.е. максимального значения. Вакуумный диод используется для выпрямления переменного тока.

Ток на входе диодного выпрямителя:

Ток на выходе выпрямителя:

Электронные пучки
— это поток быстро летящих электронов в электронных лампах и газоразрядных устройствах.

Свойства электронных пучков: — отклоняются в электрических полях; — отклоняются в магнитных полях под действием силы Лоренца; — при торможении пучка, попадающего на вещество возникает рентгеновское излучение; — вызывает свечение ( люминисценцию ) некоторых твердых и жидких тел ( люминофоров );

— нагревают вещество, попадая на него.

Электронно — лучевая трубка ( ЭЛТ )
— используются явления термоэлектронной эмиссии и свойства электронных пучков.

ЭЛТ состоит из электронной пушки, горизонтальных и вертикальных отклоняющих пластин-электродов и экрана. В электронной пушке электроны, испускаемые подогревным катодом, проходят через управляющий электрод-сетку и ускоряются анодами.

Электронная пушка фокусирует электронный пучок в точку и изменяет яркость свечения на экране. Отклоняющие горизонтальные и вертикальные пластины позволяют перемещать электронный пучок на экране в любую точку экрана.

Экран трубки покрыт люминофором, который начинает светиться при бомбардировке его электронами. Существуют два вида трубок: 1) с электростатическим управлением электронного пучка (отклонение эл. пучка только лишь эл.

полем); 2) с электромагнитным управлением ( добавляются магнитные отклоняющие катушки ). Основное применение ЭЛТ: кинескопы в телеаппаратуре; дисплеи ЭВМ;

электронные осциллографы в измерительной технике.

6 Вопрос. Электрический ток в газах (ВАХ газового разряда). Несамостоятельный и самостоятельный разряд.

В обычных условиях газ — это диэлектрик, т.е. он состоит из нейтральных атомов и молекул и не содержит свободных носителей эл.тока.
Газ-проводник — это ионизированный газ. Ионизированный газ обладает электронно-ионной проводимостью.

Воздух является диэлектриком в линиях электропередач, в воздушных конденсаторах, в контактных выключателях.

Воздух является проводником при возникновении молнии, электрической искры, при возникновении сварочной дуги.

Ионизация газа

— это распад нейтральных атомов или молекул на положительные ионы и электроны путем отрыва электронов от атомов. Ионизация происходит при нагревании газа или воздействия излучений (УФ, рентген, радиоактивное) и объясняется распадом атомов и молекул при столкновениях на высоких скоростях.

Газовый разряд — это эл.ток в ионизированных газах.

Носителями зарядов являются положительные ионы и электроны. Газовый разряд наблюдается в газоразрядных трубках (лампах) при воздействии электрического или магнитного поля.

Рекомбинация заряженных частиц

— газ перестает быть проводником, если ионизация прекращается, это происходит в следствие рекомбинации ( воссоединения противоположно заряженных частиц).

Существует самостоятельный и несамостоятельный газовый разряд.

Несамостоятельный газовый разряд
— если действие ионизатора прекратить , то прекратится и разряд.

Когда разряд достигает насыщения — график становится горизонтальным. Здесь электропроводность газа вызвана лишь действием ионизатора.

Самостоятельный газовый разряд — в этом случае газовый разряд продолжается и после прекращения действия внешнего ионизатора за счет ионов и электронов, возникших в результате ударной ионизации ( = ионизации эл. удара); возникает при увеличении разности потенциалов между электродами ( возникает электронная лавина).

Несамостоятельный газовый разряд может переходить в самостоятельный газовый разряд при Ua = Uзажигания.

7 Вопрос. Механизм возникновения самостоятельного газового разряда.

Чтобы разряд стал самостоятельным, каждый вырванный с катода электрон в результате цепочки взаимодействий должен вырвать с катода по крайней мере еще 1 электрон.

Вспомним, что при ионизации атома электроном помимо свободного электрона возникает еще и ион, который движется под действием поля в противоположном электронам направлении – к катоду.

В результате столкновения иона с катодом с последнего может быть эмитирован электрон (этот процесс называется вторичной электронной эмиссией). Сам механизм соответствует темному самостоятельному разряду.

То есть при таких условиях не происходит генерация излучения. Падающий характер этого участка объясняется тем, что при больших токах нужны меньшие энергии электронов для сохранения самостоятельности разряда и, следовательно, меньшие ускоряющие поля.

Типы самостоятельного разряда. Техническое применение
1. Тлеющий разряд. Применяется в газосветных трубках, неоновых лампах, циф­ровых индикаторах, лампах дневного света, ртутных лампах низкого давления.
a. Несветящаяся часть, прилегающая к катоду, наз. темным катодным пространством, b. Светящийся столб газа, заполняющий остальную часть, наз. анодным положительным столбом. При определенных давлениях анодный столб распадается на отдельные слои, разделенные темными промежутками (страты). Причиной ионизации газа в тлеющем разряде является ударная ионизация и выбивание электронов из катода положительными ионами.
2. Дуговой разряд. Применяется в ртутных лампах высокого давления, источниках света, при сварке металлов, в электроплавильных печах, при электролизе расплавов, в электропечах.
3. Коронный разряд Высокая напряженность. Используют в электрофиль­трах для очистки газов от при­месей твердых частиц. Применяется в счетчиках заряженных частиц Гейгера-Мюллера. Громоотвод. Отрица­тельное явление: вызывает утеч­ку энергии на высоковольтных линиях.
4. Искровой разряд Высокое напряжение. Применяется при обработке металлов. Молния: U=108 В,I=105 А, продолжительность 10-6 с, диаметр канала 10 — 20 см.

Источник: https://cyberpedia.su/16x5adb.html

Определение работы выхода электронов из металла

Как определить работу выхода электронов из металла...

Цель работы: построение и изучение вольтамперной характеристики двухэлектродной лампы (диода); исследование зависимости плотности тока насыщения термоэлектронной эмиссии от температуры катода и определение работы выхода электрона из вольфрама методом прямых Ричардсона.

Теоретическое введение

В этой лабораторной работе рассмотрим, как простые модели металла могут быть использованы для объяснения термоэлектронной эмиссии электронов.

Многие физические свойства металлов можно объяснить, основываясь на модели свободных электронов.

В этой модели валентные электроны атомов металла считаются полностью свободными в пространстве, ограниченном поверхностью.

Именно валентные электроны обуславливают электропроводность металла, и по этой причине их называют электронами проводимости и отличают от электронов, заполняющих оболочки ионных остовов.

Следующее доказательство правильности представления о свободных электронах в металлах мы обнаруживаем в явлениях термоэлектронной эмиссии. Известно (Ричардсон, 1903 г.

), что электроны самопроизвольно выделяются из раскаленных металлов и что в отсутствие внешнего электрического поля они образуют электронное облако вокруг нагретого тела.

Число таких электронов можно определить, измерив ток, возникающий при включении внешнего электрического поля.

Теоретически явление термоэлектронной эмиссии можно объяснить, используя модель свободных электронов. В металле электроны проводимости могут двигаться свободно, участвуя в тепловом движении.

Так как они удерживаются внутри металла, то значит, вблизи поверхности металла существуют силы, действующие на электроны и направленные внутрь металла.

Чтобы электрон мог выйти из металла за его пределы, должна быть совершена определенная работа А против этих сил, которая получила название работа выхода электрона из металла.

Так как электрон – заряженная частица, то существование работы выхода показывает, что в поверхностном слое металла существует электрическое поле, а следовательно, электрический потенциал при переходе через этот поверхностный слой меняется на некоторую величину φ, которая, так же как и работа выхода, является характеристикой металла. Эта поверхностная разность потенциала связана с работой выхода очевидным соотношением:

, (13.1)

где e – заряд электрона.

Изменение потенциала внутри металла в отсутствие тока можно наглядно представить при помощи диаграммы (рис.13.1). По вертикальной оси отложена потенциальная энергия электрона Ep, то есть , причём значение потенциала вне металла принято равным нулю.

Потенциальная энергия электрона вне металла постоянна; в поверхностном слое она быстро изменяется, а именно уменьшается на величину работы выхода, а внутри металла опять становится постоянной.

Так что распределение потенциальной энергии электрона внутри металла представляется в виде потенциальной ямы (ящика).

Можно указать две причины возникновения работы выхода. Одна заключается в индукционном действии удаляемого электрона из металла.

Такой электрон вызывает на поверхности металла положительный индуцированный заряд, отчего между электронами и металлом возникает сила притяжения, препятствующая удалению электрона. Вторая заключается в том, что вылетевшие из металла электроны образуют электронное облако.

В результате у поверхности металла возникает тонкий двойной электрический слой, электрическое поле которого препятствует вылету электронов из металла.

Если электрон внутри металла имеет кинетическую энергию Eк1 меньшую, чем глубина потенциального ящика (рис.13.1): , то такой электрон не сможет покинуть металл. Если же его кинетическая энергия , то электрон вылетает из металла. Условия вылета электрона из металла:

, (13.2)

где m – масса электрона, v – его скорость.

Работа выхода для металлов имеет порядок нескольких электрон-вольт (1 эВ=1.6.10-19 Дж). Величина энергии теплового движения равна , и при комнатной температуре Т=300 К она равна 0.02 эВ (то есть ). Поэтому при комнатной температуре подавляющее большинство электронов проводимости находится внутри металла.

Зависимость плотности тока насыщения jн ( ) от температуры катода Т известна в литературе под названием формулы Ричардсона-Дэшмена:

, (13.3)

где k – постоянная Больцмана, равная 1.38.10-23 Дж/К; В – постоянная, величина которой для многих чистых металлов лежит в пределах: (0.6÷162)А/(м2.К2).

Рассмотрим, как классическая статистическая физика объясняет эту зависимость.

Термоэлектронная эмиссия заключается в том, что быстрые электроны металла, обладающие кинетической энергией теплового движения, большей, чем работа выхода, встречая поверхность металла, преодолевают потенциальный барьер на поверхности и выходят за пределы металла.

Для этого надо найти число электронов, ударяющихся за секунду о единицу поверхности металла и причем таких, у которых кинетическая энергия перпендикулярной к поверхности составляющей скорости движения, например по оси ОХ, достаточна для преодоления потенциального барьера. Если обозначим через n1 число таких электронов, то

. (13.4)

Далее, используя закон распределения Максвелла по скоростям, нужно найти число электронов, для которых . Число электронов n в единице объема, скорость которых лежит в интервале скоростей между v и (v+dv), равно (распределение Максвелла)

. (13.5)

Аналогично число электронов в единице объема с компонентой скорости между vx и (v x+dvx) равно

, (13.6)

поскольку , .

Теперь, чтобы получить число таких электронов, попадающих на единичную площадку поверхности металла за одну секунду, нужно величину dnx умножить на vx, так как за единицу времени поверхности достигают все электроны с компонентой скорости vx, содержащиеся в слое толщины vx, прилегающем к поверхности. Таким образом, плотность тока насыщения выражается интегралом

. (13.7)

Взяв этот интеграл, получим выражение

. (13.8)

Этот результат основан на представлениях классической электронной теории.

Квантовая теория металлов, в которой распределение электронов проводимости по энергиям – это распределение Ферми, приводит к соотношению (13.3), в которое вместо в (13.8) входит . Нужно заметить, что на опыте это различие не очень существенно, так как зависимость определяется главным образом экспоненциальным множителем .

Экспериментальная часть



Источник: https://infopedia.su/5x1b1c.html

Определение работы выхода электрона из металла

Как определить работу выхода электронов из металла...

Методические указания к лабораторной работе № 37

по физике (раздел «Оптика и атомная физика»)

Ростов-на-Дону
2013

УДК 530.1

Составители: С.М. Максимов, И.В. Ершов

Определение работы выхода электрона из металла: метод. указания к лабораторной работе № 37 по физике (раздел оптика и атомная физика). – Ростов н/Д: Издательский центр ДГТУ, 2013. – 10 с.

Указания содержат краткую теорию по явлению термоэлектронной эмиссии и работе вакуумного диода, а также порядок выполнения лабораторной работы.

Методические указания предназначены для выполнения лабораторной работы студентами всех форм обучения в лабораторном практикуме по физике (раздел «Оптика»).

Печатается по решению методической комиссии факультета
«Нанотехнологии и композиционные материалы»

Научный редактор д-р. техн. наук, проф. В.С. Кунаков

© Издательский центр ДГТУ, 2013

Цель работы: Определение работы выхода электрона из вольфрамовой нити накала двухэлектродной лампы.

Приборы и принадлежности:вакуумный диод, вольтметр постоянного тока, миллиамперметр постоянного тока, амперметр переменного тока, два реостата, выпрямитель.

Краткая теория:

1. Работа выхода электрона из металла.

Электроны проводимости в металле находятся в беспорядочном тепловом движении, однако при этом они практически не выходят с поверхности металла в вакуум даже при комнатной температуре. Это объясняется увеличением потенциальной энергии электрона при удалении его от поверхности металла.

Таким образом, металл представляет для электронов проводимости потенциальную яму, ограниченную со всех сторон потенциальными барьерами.

Отдельные электроны постоянно покидают поверхность металла, удаляясь от нее на несколько межатомных расстояний (d ≈ 10-9 – 10-10 м) и затем возвращаются обратно, поскольку их энергии недостаточно, чтобы преодолеть потенциальный барьер.

В результате металл оказывается окруженным электронным облаком, которое образует совместно с наружным слоем ионов двойной электрический слой. В таком электронном облаке на электроны действуют силы, направленные внутрь металла. Для перевода электрона из металла в вакуум необходимо совершить работу против этих сил. При этом совершаемая работа идет на увеличение потенциальной энергии электрона.

Для удаления электронов за пределы металла разным электронам необходимо сообщить не одинаковую энергию.

Например, электронам, находящимся на дне зоны проводимости, необходимо сообщить энергию, равную высоте потенциального барьера εb, а для электрона, находящегося на самом верхнем заполненном уровне, достаточна энергия εb – εF (рис.1).

Здесь εF – энергия, отделяющая заполненные энергетические уровни электронов от незаполненных, называемая энергией Ферми (или уровнем Ферми).

Наименьшая энергия, которую необходимо сообщить электрону для удаления его из твердого тела в вакуум, называется работой выхода. Работу выхода принято обозначать через Авых = и отсчитывать ее от уровня Ферми (где φ – потенциал выхода)

. (1)

Данное определение работы выхода распространяется на любые температуры.

2. Вакуумный диод.

Для того, чтобы электрон проводимости вылетел за пределы металла, необходимо, чтобы его кинетическая энергия оказалась больше работы выхода:

. (2)

Эту энергию электрон может получить разными путями. Один из них – повышение температуры металла, в результате чего происходит испускание (эмиссия) электронов в вакуум. Явление испускания электронов нагретым металлом называется термоэлектронной эмиссией.

Исследование термоэлектронной эмиссии осуществляется с помощью двухэлектродной лампы (вакуумного диода), подключенной по схеме (рис.2).

Вакуумный диод представляет собой хорошо откачанный стеклянный баллон, внутри которого имеется два электрода – катод К и анод А. В простейшем случае катод имеет форму тонкой прямой нити, анод – коаксиального с ней цилиндра.

Катод нагревается током от батареи накала . Ток накала можно менять с помощью реостата R1. Между катодом и анодом с помощью батареи e создается разность потенциалов порядка 100 — 200 В, которая регулируется реостатом R2.

Анодный ток измеряется с помощью миллиамперметра.

При постоянном токе накала катода зависимость силы анодного тока от анодного напряжения Ia = f(Ua) имеет вид, показанный на рис. 3. Эта кривая называется вольт-амперной характеристикой (ВАХ) диода. Различные кривые соответствуют разным температурам катода.

Согласно графику зависимости Ia = f(Ua) закон Ома для анодного тока в вакуумном диоде не выполняется. При Ua = 0 лишь небольшому числу электронов, вылетевших из катода, удается преодолеть электронное облако и долететь до анода, при этом в анодной цепи будет течь слабый ток.

Чтобы полностью прекратить анодный ток, необходимо приложить между электродами некоторое отрицательное напряжение, поэтому вольт-амперная характеристика диода начинается не в нуле, а немного левее начала координат. Начальный участок кривой на рис.

3 достаточно хорошо описывается зависимостью , поэтому при малых значениях Ua анодный ток изменяется по закону степени трех вторых:

, (3)

где G – коэффициент пропорциональности, зависящий только от конструкции диода, называемый первеансом лампы. При дальнейшем увеличении анодного напряжения анодный ток перестает расти, стремясь к определенному при данной температуре значению IS, называемому током насыщения (рис.3).

Как показывает опыт, ток насыщения растет с повышением температуры катода. Зависимость плотности тока от температуры при термоэлектронной эмиссии описывается уравнением Ричардсона-Дэшмена:

, (4)

где jT – плотность тока термоэлектронной эмиссии

A – постоянная, зависящая от рода металла

k = 1,38∙10-23 Дж/К – постоянная Больцмана

Уравнение (3) является основным законом термоэлектронной эмиссии. Ток насыщения для вакуумного диода определяется как:

, (5)

где S – площадь анода.

Плотность тока насыщения в соответствии с уравнением (4) определяется формулой:

(6)

Выберем два значения тока насыщения при различных температурах и найдем их отношение:

(7)

где Aвых = eφ

Прологарифмируем полученное отношение:

(8)

Отсюда получим выражение для работы выхода:

(9)

Таким образом, для определения работы выхода необходимо знать несколько пар значений токов насыщения и соответствующих им температур.

Порядок выполнения работы:

1. Собрать схему установки согласно рис. 4.

2. Включить выпрямитель в сеть и при помощи реостата R2 установить начальный ток накала, заданный преподавателем.

3. Изменяя при помощи реостата R1 анодное напряжение в пределах от 0 до 200 В с шагом 20 В, снять ВАХ диода, определить значения анодного тока при заданном начальном токе накала. Повторить аналогичные измерения анодного тока еще для двух других значений тока накала. Результаты измерений занести в табл. 1.

4. Используя полученные значения Ia, построить графики зависимости анодного тока от анодного напряжения (ВАХ) Ia = f(Ua).

5. Построить на одном графике все три ВАХ (Ia = f(Ua)) диода для разных значений тока накала. По графикам определить значения токов насыщения.

6. Определить для каждого тока накала температуру катода, используя график на рис.5.

7. Для каждой пары (1-2; 2-3; 1-3) вольт-амперных характеристик определить работу выхода электрона по формуле (9), вычислить её среднее значение и определить относительную погрешность измерений δA. Результаты занести в табл. 2.

Таблица 1

    №IНАК.1 = АIНАК.2 = АIНАК.3 = А
Ua, ВIa, мАUa, ВIa, мАUa, ВIa, мА
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

Таблица 2

  №Is, мАT, KAвых, эВΔAвых, эВ δAвых, %
1. 1-2
2. 2-3
3. 1-3
Среднее значение

Контрольные вопросы:

1. Что называется работой выхода электрона из металла? Чем она обусловлена и от чего зависит?

2. В чем состоит явление термоэлектронной эмиссии?

3. Как устроен диод, и для каких целей он применяется?

4. Изобразите типичную вольт-амперную характеристику диода и объясните её.

5. Сформулируйте закон степени трех вторых.

6. Запишите формулу Ричардсона-Дэшмена и объясните её.

7. Опишите экспериментальный метод определения работы выхода электрона с использованием вакуумного диода.

Правила техники безопасности. При выполнении работы необходимо убедиться, что все токоведущие части электрической схемы изолированы. Категорически запрещается касаться руками или другими предметами зажимов цепи, находящихся под напряжением. По окончании работы обязательно отключите электрическую схему от источника напряжения.

Литература

1. Трофимова Т.И. Курс физики / Т.И. Трофимова. – М.: Академия, 2006.

2. Савельев И.В. Курс общей физики. Том. 2. Электричество и магнетизм. Волны. Оптика / И.В. Савельев. – Спб.: Лань, 2006.

3. Сушков А.Д. Вакуумная электроника / А.Д. Сушков. – Спб.: Лань, 2004.

Составители: Максимов С.М., Ершов И.В.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/10_107598_opredelenie-raboti-vihoda-elektrona-iz-metalla.html

Biz-books
Добавить комментарий