Как определить работу совершенную газом и теплоту…

Работа при изопроцессах. Методические материалы

Как определить работу совершенную газом и теплоту...

Цифровой ресурс может использоваться для обучения в рамках программы средней школы (базового и профильного уровней).

Модель иллюстрирует учебную тему «Термодинамика. Работа газа».

Вводится понятие «работа газа», рассматриваются особенности работы газа при изохорном, изобарном, изотермическом и адиабатном процессах.

Краткая теория

Внутренняя энергия тела может изменяться, если действующие на него внешние силы совершают работу (положительную или отрицательную).

Например, если газ подвергается сжатию в цилиндре под поршнем, то внешние силы совершают над газом некоторую положительную работу A'. В то же время силы давления, действующие со стороны газа на поршень, совершают работу A = –A'.

Если объем газа изменился на малую величину ΔV, то газ совершает работу pSΔx = pΔV, где p – давление газа, S – площадь поршня, Δx – его перемещение (рис. 1).

Рис. 1. 

При расширении работа, совершаемая газом, положительна, при сжатии – отрицательна. В общем случае при переходе из некоторого начального состояния (1) в конечное состояние (2) работа газа выражается формулой: или в пределе при ΔVi → 0:

В изохорном процессе (V = const) газ работы не совершает, A = 0.

В изобарном процессе (p = const) работа, совершаемая газом, выражается соотношением:

В изотермическом процессе температура газа не изменяется, следовательно, не изменяется и внутренняя энергия газа, ΔU = 0.

Первый закон термодинамики для изотермического процесса выражается соотношением Q = A.

Количество теплоты Q, полученной газом в процессе изотермического расширения, идет на совершение работы над внешними телами. При изотермическом сжатии работа внешних сил, произведенная над газом, превращается в теплоту, которая передается окружающим телам.

Наряду с изохорным, изобарным и изотермическим процессами в термодинамике часто рассматриваются процессы, протекающие в отсутствие теплообмена с окружающими телами. Сосуды с теплонепроницаемыми стенками называются адиабатическими оболочками, а процессы расширения или сжатия газа в таких сосудах называются адиабатическими.

Работа газа в адиабатическом процессе выражается через температуры T1 и T2 начального и конечного состояний:

Работа с моделью

Модель может быть использована в режиме ручного переключения кадров и в режиме автоматической демонстрации ().

Рекомендации по применению модели

Данная модель может быть применена в качестве учебного средства на уроках изучения нового материала, повторения, решения задач в 10 классе по теме «Термодинамика. Работа газа».

В зависимости от технического оснащения учебного процесса и особенностей учебно-тематического планирования модель может использоваться в следующих вариантах:

  • иллюстративный компонент (демонстрация с использованием проекционной техники);
  • основа кратковременных (15–20 минут) работ.

Модель можно использовать как интерактивную демонстрацию по учебной теме и как средство экспериментальной проверки решенных учащимися задач.

Пример планирования уроков с использованием модели

Тема «Работа газа»

Цель урока: рассмотреть графический и аналитический способы вычисления работы газа.

Компьютерная модель в данном случае используется в качестве интерактивной демонстрации во время объяснения нового материала.

№ п/пЭтапы урокаВремя, минПриемы и методы
1Организационный момент2
2Проверка домашнего задания по теме «Внутренняя энергия»10Индивидуальный опрос
3Объяснение нового материала по теме «Работа в термодинамике» с использование компьютерной модели «Работа газа при изопроцессах»20Объяснение нового материала с применением компьютерной модели «Работа газа при изопроцессах»
4Решение задач10Решение задач на доске с пояснениями
5Объяснение домашнего задания3
Таблица 1. 

Примеры вопросов и заданий

1.Чему равна работа, которую совершают 2 моля идеального газа при изобарном нагревании на 3 К?
2.Какой из процессов происходит без обмена энергией и веществом с окружающей средой?
3.Идеальный газ в количестве ν = 1 моль совершает замкнутый круговой процесс, состоящий из двух изохор и двух изобар (см. рис.).
Рис. 2. 

Температуры в точках 1 и 3 равны соответственно T1 = 273 К и T3 = 587 К. Известно, что точки 2 и 4 лежат на одной изотерме. Определите работу, совершенную газом за цикл.

4.В цилиндре под поршнем находится некоторая масса воздуха. На его нагревание при постоянном давлении затрачено количество теплоты Q = 5 кДж. Определите работу, произведенную при этом газом. Удельная теплоемкость воздуха в процессе при постоянном давлении cp = 1,0·103 Дж/кг·К; молярную массу воздуха принять равной M = 29·10–3 кг/моль.

Источник: http://files.school-collection.edu.ru/dlrstore/93c8106a-e941-a7f6-e7cd-0f4c4585a61f/00144679003579899/00144679003579899.htm

Внутренняя энергия и работа в термодинамике. урок. Физика 10 Класс

Как определить работу совершенную газом и теплоту...

Добрый день! Мы приступаем к изучению нового раздела физики под названием «Термодинамика». Это наука, описывающая тепловые явления без учёта молекулярного строения вещества – через макропараметры (объём, давление и температуру).

Для описания состояния вещества используют понятие внутренняя энергия. Это суммарная энергия составляющих его молекул. Мы уже встречали это понятие, когда изучали закон сохранения в механике. При неупругом столкновении механическая энергия не оставалась постоянной, часть энергии превращалась именно во внутреннюю энергию.

Приведу пример: 

Рис. 1. Движение шариков

Если два пластилиновых шарика, обладающих одинаковыми массами, будут двигаться с одинаковыми скоростями навстречу друг другу (рис. 1), то при абсолютно неупругом столкновении они слипнутся и остановятся. В этом можно убедиться, записав закон сохранения импульса в проекциях на горизонтальную ось: .

До столкновения суммарная кинетическая энергия системы была равна: .

После столкновения, так как шарики остановились, кинетическая энергия системы стала равна: .

Итак, энергия, потерянная системой (в данном случае была потеряна вся кинетическая энергия) перешла во внутреннюю энергию шариков. То есть молекулы или атомы, из которых состоит вещество, приобрели дополнительную кинетическую энергию, стали двигаться быстрее.

Помимо этого, с понятием внутренней энергии мы сталкивались в молекулярно-кинетической теории, когда вводили один из макропараметров – температуру. Температура является мерой внутренней энергии вещества. Если речь идёт об идеальном или разреженном реальном газах, мы можем пренебречь потенциальной энергией взаимодействия его частиц.

В этом случае температура будет пропорциональна средней кинетической энергии движения молекул. Почему средней? Потому что количество молекул в рассматриваемом количестве вещества, как правило, огромно. Нас не интересует энергия каждой отдельной молекулы, поэтому проводится статистическая обработка и используется средняя энергия.

Для плотных газов, жидкостей и твердых тел выразить внутреннюю энергию через макроскопические параметры значительно труднее.

В частности, внутренняя энергия газа при очень большой плотности может зависеть и от объема, так как при малых расстояниях между молекулами существенный вклад во внутреннюю энергию вносит потенциальная энергия взаимодействия между частицами.

Итак, связь температуры и средней кинетической энергии для идеального и разреженного реального газов имеет следующий вид: .

А внутренняя энергия таких газов будет равна суммарной кинетической энергии всех молекул. То есть произведению средней кинетической энергии молекул на их количество:

Внутренняя энергия обычно обозначается большой латинской буквой U и измеряется в джоулях.

Если газ одноатомный, то его молекулы можно считать материальными точками, которые движутся исключительно поступательно (отсутствует кинетическая энергия вращательного и колебательного движений). В этом случае, подставив выражение для средней кинетической энергии движения молекул в выражение для внутренней энергии газа, получим: .

Выразим N через количество вещества: .

С учётом этого: .

Произведение постоянной Больцмана и числа Авогадро называется универсальной газовой постоянной и обозначается большой латинской буквой R.

Таким образом, выражение для внутренней энергии одноатомного идеального или разреженного реального газов принимает следующий вид: .

Обратите внимание, что мы рассматривали именно одноатомный газ. Для идеального газа из молекул с двумя, тремя или большим числом атомов требуется учет кинетической энергии вращения молекул (их уже нельзя считать материальными точками), поэтому выражение для их внутренней энергии отличается от , но отличается только числовым коэффициентом.

Для двухатомного газа (например, , , CO и пр.) (рис. 2): .

Рис.2. Молекулы двухатомных газов

Для газа с тремя атомами и более (например, , ) (рис. 3):

Рис.3. Газ с тремя и более атомами

Чтобы изменить внутреннюю энергию вещества, нужно передать ему некоторое количество теплоты либо совершить над ним работу. Существует несколько видов теплопередачи – и с ними вы можете познакомиться в ответвлении.

Виды теплопередачи

Существует три вида теплопередачи.

1) Теплопроводность – это процесс переноса энергии от более нагретых частей тела к менее нагретым, осуществляемый хаотически движущимися частицами тела (атомами, молекулами, электронами и т.п.). Простой пример – нагревание ложки в горячем чае.

2) Конвекция – вид теплопередачи, при котором внутренняя энергия передается струями или потоками жидкости, или газа. Пример: проветривание комнаты.

3) Излучение – процесс переноса энергии посредством электромагнитного излучения. Простой пример: солнечный свет. Количество переданной при теплообмене внутренней энергии называют количеством теплоты. Обычно ее обозначают Q и считают положительной, если тело принимает теплоту, и отрицательной, если отдает

Мы же сегодня подробнее остановимся на втором способе изменения внутренней энергии вещества – совершении работы.

При уменьшении объёма одноатомного газа в 3,6 раза его давление увеличилось на 20%. Во сколько раз изменилась внутренняя энергия.

Давайте порассуждаем:

– формулу для нахождения внутренней энергии одноатомного газа мы знаем: ;

– состояние газа в любой момент времени описывается уравнением Менделеева – Клапейрона.

Решение

Запишем уравнение состояния идеального газа для двух состояний. До уменьшения объёма и после.

Запишем выражения для внутренней энергии газа в этих состояниях:

Мы получили систему из 4 уравнений, решив которую мы сможем найти искомое соотношение: .

Пронаблюдать подробное решение системы вы можете в ответвлении.

Подробное решение системы

Выразим из первого уравнения температуру: .

И подставим её в третье уравнение: .

Аналогично выразим температуру из второго уравнения и подставим в четвёртое: .

Из условий задачи известно, что объём уменьшился в 3,6 раза, значит: .

Давление, согласно условиям, возросло на 20%, значит: .

Подставим это в выражение для : .

И найдём соотношение : .

Следовательно, внутренняя энергия газа уменьшилась в 3 раза. Задача решена

В механике работа силы определяется как скалярное произведение векторов силы и перемещения тела: .

(θ – угол между векторами силы и перемещения) (рис. 4).

Рис. 4. Угол между векторами силы и перемещения

Работа силы положительна, если вектор силы имеет положительную проекцию на перемещение (), и отрицательна, если эта проекция отрицательна (). Механическая работа меняет механическую энергию тела. В термодинамике то же самое.

К примеру, если газ двигает поршень, расширяясь, то у нас, как и в механике есть и сила, и перемещение.

Разница только в том, что при совершении работы в термодинамике меняется не кинетическая или потенциальная энергия газа как целого тела, а кинетическая энергия его молекул, то есть внутренняя энергия газа.

Поскольку внутренняя энергия газа есть не что иное, как кинетическая энергия составляющих его частиц, газ может сам совершать работу, например, при нагревании расширяясь и передвигая поршень.

Охлаждение газа, находящегося в неизменном объеме, наоборот, означает уменьшение энергии частиц и уменьшение давления на ограничивающую его поверхность.

Все описанные явления ясны нам из повседневного опыта, а точное вычисление происходящих изменений можно провести, используя уравнение состояния идеального газа.

Давайте найдем работу, которую совершит газ при изобарном расширении.

Пусть газ находится под подвижным поршнем. Он нагревается и расширяется, при этом поршень поднимается. Газ и до расширения, и после был под давлением атмосферы и давлением одного и того же поршня, то есть давление действительно не менялось и процесс изобарный (рис. 5).

Рис. 5. Газ до расширения и после

Работа по определению равна силе, умноженной на перемещение: .

Работу по перемещению поршня на высоту  выполняет сила, с которой газ действует на поршень. Эту силу можно выразить через параметр, который мы используем при описании состояния газа – давление. Давление, по определению, равно силе, деленной на площадь: . Тогда сила равна: .

Помня, что объем цилиндра – это площадь основания, умноженная на высоту, подставим в формулу для работы: .

В итоге формула для нахождения работы газа при изобарном процессе примет следующий вид: .

Это работа, которую выполнял газ (то есть выполняла сила, с которой газ действовал на поршень). По третьему закону Ньютона, эта сила по модулю равна силе, с которой поршень действовал на газ, и противоположна ей по направлению. Обозначим силу, действовавшую на газ: . Ее работа равна: .

Если  мы считали работой, которую совершил газ, то  – работа, совершенная над газом. Часто эти работы обозначают наоборот:  –  работа газа,  – работа над газом. Это не имеет принципиального значения, главное – условиться об обозначениях и в рамках задачи пользоваться именно ими.

Относительно работы, совершаемой газом, можно сделать общий вывод: при расширении газа работа, производимая газом, положительна, т.к. сила давления направлена в сторону перемещения (расширения) (рис. 6); при сжатии работа газа отрицательна, т.к.

сила и перемещение (сжатие) направлены противоположно (рис. 7). Работа внешних сил, наоборот, положительна при сжатии газа и отрицательна при расширении. При сжатии газа его внутренняя энергия увеличивается за счёт работы внешних сил.

При расширении сам газ совершает работу, поэтому теряет часть внутренней энергии.

Рис. 6. Расширение газа

Рис. 7. Сжатие газа

Геометрически формула  при некотором  дает площадь прямоугольника abcd на графике  (рис. 8).

Рис. 8. График зависимости давление от объема (изобарный процесс)

В общем случае давление не поддерживается постоянным. Например, в изотермическом процессе давление меняется обратно пропорционально объёму. Но и в этом случае работа газа  равна площади под кривой  (рис. 9).

Рис. 9. График зависимости давления от объема (изотермический процесс)

Эту площадь можно вычислить, разбив изменение объема на малые участки, вычислив площади малых полосок (похожих на прямоугольники) и просуммировав эти площади (рис. 10).

Рис. 10. Разбивка объема на малые участки

Процедура, смысл которой я описал, называется интегрированием. Её вы будете изучать на математике в 11 классе, поэтому сейчас я просто приведу готовую формулу для работы в изотермическом процессе: .

В изохорном процессе – объём остаётся постоянным, а значит, работа не совершается.

В вертикально расположенном цилиндре с площадью основания 1 дм2 под поршнем массой 10 кг скользящим без трения находится воздух. При изобарном нагревании воздуха поршень поднялся на 20 см. Какую работу совершил воздух, если наружное давление 100 кПа (рис. 11).

Рис. 11. Рисунок к задаче

Давайте порассуждаем:

– процесс изобарный. Работа при изобарном процессе находится по следующей формуле: ;

– нам дана площадь основания цилиндра и расстояние, на которое поднялся поршень, значит, мы легко найдём изменение объёма: ;

– чтобы найти давление газа под поршнем запишем условия равновесия поршня по первому закону Ньютона в любом из положений.

Решение

Итак, запишем первый закон Ньютона для поршня. На него действует сила тяжести mg. Снизу давит газ с силой . Cверху давит атмосфера с силой

Все силы действуют вдоль одной вертикальной прямой, значит, нам будет достаточно одной координатной оси. Направим её вертикально вниз (рис. 12) и запишем первый закон Ньютона в проекциях: .

Рис. 12. Направление оси Ох

Вместе с выражением для работы, о котором я говорил в рассуждениях, . И вместе с выражением для изменения объёма: .

Мы получили систему из трёх уравнений, решив которую найдём искомую работу, совершенную газом. Математическое решение системы вы можете пронаблюдать в свёртке.

Математическая часть решения задачи

Выразим давление газа под поршнем из первого уравнения: .

Теперь подставим полученное выражение для давления газа, а также выражение для изменения объёма из третьего уравнения – во второе уравнение:

Остаётся подставить числа и посчитать ответ:

На этом наш урок окончен. Спасибо за внимание!

Домашнее задание

  1. Что изучает термодинамика?
  2. Запишите формулу для внутренней энергии одноатомного, двухатомного и трехатомного газа.
  3. Что такое изохорный, изобарный и изотермический процессы? При каких из них меняется внутренняя энергия? При каких выполняется работа и чему она равна?

Список рекомендованной литературы

  1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика: Учеб. для общеобразоват. учреждений. Базовый и профильный уровни. 19-е издание – М.: Просвещение, 2010.
  2. Касьянов В.А. Физика. 10 кл.: Профильный уровень. 13-е издание. – М.: 2013 – 432 с.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Источник: https://interneturok.ru/lesson/physics/10-klass/osnovy-termodinamiki/vnutrennyaya-energiya-i-rabota-v-termodinamike

Термодинамика – FIZI4KA

Как определить работу совершенную газом и теплоту...

ЕГЭ 2018 по физике ›

Термодинамика – это раздел физики, изучающий тепловые свойства макроскопических тел и систем тел, находящихся в состоянии теплового равновесия, на основе закона сохранения энергии, без учета внутреннего строения тел, составляющих систему.

Термодинамика не рассматривает микроскопические величины – размеры атомов и молекул, их массы и количество.

Законы термодинамики устанавливают связи между непосредственно наблюдаемыми физическими величинами, характеризующими состояние системы, такими как давление ​\( p \)​, объем ​\( V \)​, температура ​\( T \)​.

Внутренняя энергия

Внутренняя энергия – это физическая величина, равная сумме кинетической энергии теплового движения частиц тела и потенциальной энергии их взаимодействия друг с другом.

Обозначение – ​\( U \)​, в СИ единица измерения – Джоуль (Дж).

В термодинамике внутренняя энергия зависит от температуры и объема тела.

Внутренняя энергия тел зависит от их температуры, массы и агрегатного состояния. С ростом температуры внутренняя энергия увеличивается. Наибольшая внутренняя энергия у вещества в газообразном состоянии, наименьшая – в твердом.

Внутренняя энергия идеального газа представляет собой только кинетическую энергию теплового движения его частиц; потенциальная энергия взаимодействия частиц равна нулю.

Внутренняя энергия идеального газа прямо пропорциональна его температуре, а от объема не зависит (молекулы идеального газа не взаимодействуют друг с другом):

где ​\( i \)​ – коэффициент, равный числу степеней свободы молекулы, ​\( u \)​ – количество вещества, ​\( R \)​ – универсальная газовая постоянная, ​\( T \)​ – абсолютная температура.

Число степеней свободы равно числу возможных движений частицы.

Важно!
Для одноатомных газов коэффициент ​\( i \)​ = 3, для двухатомных газов ​\( i \)​ = 5.

На практике часто важно уметь находить изменение внутренней энергии:

При решении задач можно записать формулу для вычисления внутренней энергии, используя уравнение Менделеева–Клапейрона:

где ​\( p \)​ – давление, ​\( V \)​ – объем газа.

Внутренняя энергия реальных газов зависит как от температуры, так и от объема.

Изменить внутреннюю энергию можно за счет изменения температуры (при теплопередаче) и за счет изменения давления и объема (при совершении работы).

Тепловое равновесие

Тепловое равновесие – это состояние системы, при котором все ее макроскопические параметры остаются неизменными сколь угодно долго.

Величины, характеризующие состояние макроскопических тел без учета их молекулярного строения, называются макроскопическими параметрами.

К ним относятся давление и температура, объем, масса, концентрация отдельных компонентов смеси газа и др.

В состоянии теплового равновесия отсутствует теплообмен с окружающими телами, отсутствуют переходы вещества из одного агрегатного состояния в другое, не меняются температура, давление, объем.

Любая термодинамическая система переходит самопроизвольно в состояние теплового равновесия. Каждому состоянию теплового равновесия, в которых может находиться термодинамическая система, соответствует определенная температура.

Важно!
В состоянии теплового равновесия объем, давление могут быть различными в разных частях термодинамической системы, и только температура во всех частях термодинамической системы, находящейся в состоянии теплового равновесия, является одинаковой. Микроскопические процессы внутри тела не прекращаются и при тепловом равновесии: меняются положения молекул, их скорости при столкновениях.

Теплопередача

Теплопередача – процесс изменения внутренней энергии тела без совершения работы.

Существуют три вида теплопередачи: теплопроводность, конвекция и излучение (лучистый теплообмен). Теплопередача происходит между телами, имеющими разную температуру. Тепло передается от тела с более высокой температурой к телу с более низкой температурой.

Теплопроводность – это процесс переноса энергии от более нагретых тел (частей тела) к менее нагретым в результате движения и взаимодействия частиц тела. Высокую теплопроводность имеют металлы – так, лучшие проводники тепла – медь, золото, серебро.

Теплопроводность жидкостей меньше, а газы являются плохими проводниками тепла. Пористые тела плохо проводят тепло, так как в порах содержится воздух. Вещества с низкой теплопроводностью используют в качестве теплоизоляторов. Теплопроводность невозможна в вакууме.

При теплопроводности не происходит переноса вещества.

Явление теплопроводности газов аналогично явлению диффузии. Быстрые молекулы из слоя с более высокой температурой перемещаются в более холодный слой, а молекулы из холодного слоя перемещаются в более нагретый. За счет этого средняя кинетическая энергия молекул более теплого слоя уменьшается, и его температура становится ниже.

В жидкостях и твердых телах при повышении температуры какого-либо участка твердого тела или жидкости его частицы начинают колебаться сильнее. Соударяясь с соседними частицами, где температура ниже, эти частицы передают им часть своей энергии, и температура этого участка возрастает.

Конвекция – перенос энергии потоками жидкости или газа.

Объяснить механизм конвекции можно на основе теплового расширения тел и закона Архимеда. При нагревании объем жидкости увеличивается, а плотность уменьшается. Нагретый слой под действием силы Архимеда поднимается вверх, а холодный опускается вниз. Это естественная конвекция. Она возникает при неравномерном нагревании жидкости или газа снизу в поле тяготения.

При вынужденной конвекции перемещение вещества происходит под действием насосов, лопастей вентилятора. Такая конвекция применяется в состоянии невесомости. Интенсивность конвекции зависит от разности температур слоев среды и агрегатного состояния вещества. Конвекционные потоки поднимаются вверх. При конвекции происходит перенос вещества.

В твердых телах конвекция невозможна, так как частицы не могут из-за сильного взаимодействия покидать свои места. В вакууме конвекция также невозможна.

Примером конвективных потоков в природе являются ветры (бризы дневной и ночной, муссоны).

Излучение (лучистый теплообмен) – перенос энергии электромагнитными волнами. Перенос тепла излучением возможен в вакууме. Источником излучения является любое тело, температура которого отлична от нуля К.

При поглощении энергия теплового излучения переходит во внутреннюю энергию. Темные тела быстрее нагреваются излучением, чем тела с блестящей поверхностью, но и остывают быстрее. Мощность излучения зависит от температуры тела. С увеличением температуры тела энергия излучения увеличивается.

Чем больше площадь поверхности тела, тем интенсивнее излучение.

Количество теплоты. Удельная теплоемкость вещества

Количество теплоты – это скалярная физическая величина, равная энергии, которую тело получило или отдало при теплопередаче.

Обозначение – ​\( Q \)​, в СИ единица измерения – Дж.

Удельная теплоемкость – это скалярная физическая величина, численно равная количеству теплоты, которое тело массой 1 кг получает или отдает при изменении его температуры на 1 К.

Обозначение – ​\( c \)​, в СИ единица измерения – Дж/(кг·К).

Удельная теплоемкость определяется не только свойствами вещества, но и тем, в каком процессе осуществляется теплопередача.

Поэтому выделяют удельную теплоемкость газа при постоянном давлении – ​\( c_P \)​ и удельную теплоемкость газа при постоянном объеме – ​\( c_V \)​.

Для нагревания газа на 1 К при постоянном давлении требуется большее количество теплоты, чем при постоянном объеме – ​\( c_P > c_V \)​.

Формула для вычисления количества теплоты, которое получает тело при нагревании или отдает при охлаждении:

где ​\( m \)​ – масса тела, ​\( c \)​ – удельная теплоемкость, ​\( T_2 \)​ – конечная температура тела, ​\( T_1 \)​ – начальная температура тела.

Важно!
При решении задач на расчет количества теплоты при нагревании или охлаждении можно не переводить температуру в кельвины. Так как 1К=1°С, то​\( \Delta T=\Delta t \)​.

Работа в термодинамике

Работа в термодинамике равна изменению внутренней энергии тела.

Обозначение работы газа – ​\( A’ \)​, единица измерения в СИ – джоуль (Дж). Обозначение работы внешних сил над газом – ​\( A \)​.

Работа газа ​\( A’ =-A \)​.

Работой расширения идеального газа называют работу, которую газ совершает против внешнего давления.

Работа газа положительна при расширении и отрицательна при его сжатии. Если объем газа не изменяется (изохорный процесс), то работы газ не совершает.

Графически работа газа может быть вычислена как площадь фигуры под графиком зависимости давления от объема в координатных осях ​\( (p,V) \)​, ограниченная графиком, осью ​\( V \)​ и перпендикулярами, проведенными из точек начального и конечного значений объема.

Формула для вычисления работы газа:

в изобарном процессе ​\( A’=p\cdot\Delta V. \)​

в изотермическом процессе \( A’=\frac{m}{M}RT\ln\frac{V_2}{V_1}. \)​

Уравнение теплового баланса

Если система тел является теплоизолированной, то ее внутренняя энергия не будет изменяться несмотря на изменения, происходящие внутри системы. Если ​\( A \)​ = 0, ​\( Q \)​ = 0, то и ​\( \Delta U \)​ = 0 .

При любых процессах, происходящих в теплоизолированной системе, ее внутренняя энергия не изменяется (закон сохранения внутренней энергии).

Рассмотрим теплоизолированную систему из двух тел с разными температурами. При контакте между ними будет проходить теплообмен.

Тело с большей температурой будет отдавать некоторое количество теплоты, а тело с меньшей температурой – получать, пока температуры тел не станут равными.

Так как суммарная внутренняя энергия не должна изменяться, то, на сколько уменьшится внутренняя энергия более нагретого тела, на столько должна увеличиться внутренняя энергия второго тела. Так как работа не совершается, то изменение внутренней энергии равно количеству теплоты.

Количество теплоты, отданное при теплообмене телом с большей температурой, равно по модулю количеству теплоты, полученному телом с меньшей температурой:

Другая формулировка: если тела образуют замкнутую систему и между ними происходит только теплообмен, то алгебраическая сумма отданных ​\( Q_{отд} \)​ и полученных \( Q_{пол} \) количеств теплоты равна нулю:

Первый закон термодинамики

Закон сохранения и превращения энергии, распространенный на тепловые явления, называется первым законом (началом) термодинамики.

Можно дать формулировку этого закона исходя из способов изменения внутренней энергии.

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

Если рассматривать работу самой системы над внешними телами, то закон может быть сформулирован так:

количество теплоты, переданное системе, идет на изменение ее внутренней энергии и совершение системой работы над внешними телами:

Если система изолирована и над ней не совершается работа и нет теплообмена с внешними телами, то в этом случае внутренняя энергия не изменяется. Если к системе не поступает теплота, то работа системой может совершаться только за счет уменьшения внутренней энергии. Это значит, что невозможно создать вечный двигатель – устройство, способное совершать работу без каких-либо затрат топлива.

Первый закон термодинамики для изопроцессов

Изотермический процесс: ​\( Q=A’\,(T=const, \Delta U=0) \)​
Физический смысл: все переданное газу тепло идет на совершение работы.

Изобарный процесс: \( Q=\Delta U+A’ \)​
Физический смысл: подводимое к газу тепло идет на увеличение его внутренней энергии и на совершение газом работы.

Изохорный процесс: \( Q=\Delta U\,(V=const, A’=0) \)​
Физический смысл: внутренняя энергия газа увеличивается за счет подводимого тепла.

Адиабатный процесс: ​\( \Delta U=-A’ \)​ или ​\( A=\Delta U\,\mathbf{(Q=0)} \)​
Физический смысл: внутренняя энергия газа уменьшается за счет совершения газом работы. Температура газа при этом понижается.

Задачи об изменении внутренней энергии тел

Такие задачи можно разделить на группы:

  • При взаимодействии тел изменяется их внутренняя энергия без совершения работы над внешней средой.
  • Рассматриваются явления, связанные с превращением одного вида энергии в другой при взаимодействии двух тел. В результате происходит изменение внутренней энергии одного тела вследствие совершенной им или над ним работы.

При решении задач первой группы:

  • установить, у каких тел внутренняя энергия уменьшается, а у каких – возрастает;
  • составить уравнение теплового баланса ​\( (\Delta U=0) \), при записи которого в выражении ​\( Q =cm(t_2 – t_1) \)​ для изменения внутренней энергии нужно вычитать из конечной температуры тела начальную и суммировать члены с учетом получающегося знака;
  • решить полученное уравнение относительно искомой величины;
  • проверить решение.

При решении задач второй группы:

  • убедиться, что в процессе взаимодействия тел теплота извне к ним не подводится, т.е. действительно ли ​\( Q = 0 \)​;
  • установить, у какого из двух взаимодействующих тел изменяется внутренняя энергия и что является причиной этого изменения – работа, совершенная самим телом, или работа, совершенная над телом;
  • записать уравнение ​\( Q = \Delta U + A \)​ для тела, у которого изменяется внутренняя энергия, учитывая знак перед работой и КПД рассматриваемого процесса;
  • если работа совершается за счет уменьшения внутренней энергии одного из тел, то ​\( А= -\Delta U \)​, а если внутренняя энергия тела увеличивается за счет работы, совершенной над телом, то ​\( A=\Delta U \)​;
  • найти выражения для ​\( \Delta U \)​ и ​\( A \)​;
  • подставить в исходное уравнение вместо \( \Delta U \) и \( A \) выражения для них, получить окончательное соотношение для определения искомой величины;
  • решить полученное уравнение относительно искомой величины;
  • проверить решение.

Второй закон термодинамики

Все процессы в природе протекают только в одном направлении. В обратном направлении самопроизвольно они протекать не могут. Необратимым называется процесс, обратный которому может протекать только как составляющая более сложного процесса.

Примеры необратимых процессов:

  • переход тепла от более нагретого тела к менее нагретому телу;
  • переход механической энергии во внутреннюю энергию.

Первый закон термодинамики ничего не говорит о направлении процессов в природе.

Второй закон термодинамики выражает необратимость процессов, происходящих в природе. Существует несколько его формулировок.

Второй закон термодинамики (формулировка Клаузиуса):
невозможно перевести тепло от более холодной системы к более горячей при отсутствии одновременных изменений в обеих системах или окружающих телах.

Второй закон термодинамики (формулировка Кельвина):
невозможно осуществить такой периодический процесс, единственным результатом которого было бы получение работы за счет теплоты, взятой от одного источника.

Эта формулировка говорит также и о том, что невозможно построить вечный двигатель второго рода, то есть двигатель, совершающий работу за счет охлаждения какого-либо одного тела.

Важно!
В формулировке второго закона термодинамики большое значение имеют слова «единственным результатом».

Если процессы, о которых идет речь, не являются единственными, то запреты снимаются.

Например, в холодильнике происходит передача тепла от более холодного тела к нагретому и при этом осуществляется компенсирующий процесс превращения механической энергии окружающих тел во внутреннюю энергию.

Второй закон термодинамики выполняется для систем с огромным числом частиц. В системах с малым количеством частиц возможны флуктуации – отклонения от равновесия.

Кпд тепловой машины

Коэффициентом полезного действия (КПД) тепловой машины (двигателя) называется отношение работы ​\( A \)​, совершаемой двигателем за цикл, к количеству теплоты ​\( Q_1 \)​, полученному за цикл от нагревателя:

Тепловая машина с максимальным КПД была создана Карно. В машине осуществляется круговой процесс (цикл Карно), при котором после ряда преобразований система возвращается в начальное состояние.

Цикл Карно состоит из четырех стадий:

  1. Изотермическое расширение (на рисунке — процесс 1–2). В начале процесса рабочее тело имеет температуру ​\( T_1 \)​, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передает ему количество теплоты ​\( Q_1 \)​. При этом объем рабочего тела увеличивается.
  2. Адиабатное расширение (на рисунке — процесс 2–3). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника ​\( T_2 \)​.
  3. Изотермическое сжатие (на рисунке — процесс 3–4). Рабочее тело, имеющее к тому времени температуру ​\( T_2 \)​, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты ​\( Q_2 \)​.
  4. Адиабатное сжатие (на рисунке — процесс 4–1). Рабочее тело отсоединяется от холодильника. При этом его температура увеличивается до температуры нагревателя ​\( T_1 \)​.

КПД цикла Карно:

Отсюда видно, что КПД цикла Карно с идеальным газом зависит только от температуры нагревателя ​\( (T_1) \)​ и холодильника \( (T_2) \).

Из уравнения следуют выводы:

  • для повышения Кпд тепловой машины нужно увеличить температуру нагревателя и уменьшить температуру холодильника;
  • Кпд тепловой машины всегда меньше 1.

Цикл Карно обратим, так как все его составные части являются равновесными процессами.

КПД тепловых двигателей: двигатель внутреннего сгорания — 30%, дизельный двигатель — 40%, паровая турбина — 40%, газовая турбина — 25–30%.

Принципы действия тепловых машин

Тепловым двигателем называют устройство, преобразующее внутреннюю энергию топлива в механическую энергию.

Основные части теплового двигателя:

  • Нагреватель – тело с постоянной температурой, преобразующее внутреннюю энергию топлива в энергию газа. В каждом цикле работы двигателя нагреватель передает рабочему телу некоторое количество теплоты.
  • Рабочее тело – это газ, совершающий работу при расширении.
  • Холодильник – тело с постоянной температурой, которому рабочее тело передает часть тепла.

Любая тепловая машина получает от нагревателя некоторое количество теплоты ​\( Q_1 \)​ и передает холодильнику количество теплоты ​\( Q_2 \)​. Так как ​\( Q_1 > Q_2 \)​, то совершается работа ​\( A’ = Q_1 – Q_2 \)​.

Тепловой двигатель должен работать циклически, поэтому расширение рабочего тела должно сменяться его сжатием.

Работа расширения газа должна быть больше работы сжатия, совершаемой внешними силами (условие совершения полезной работы). Температура газа при расширении должна быть выше, чем температура при сжатии.

Тогда давление газа во всех промежуточных состояниях при сжатии будет меньше, чем при расширении.

В реальных тепловых машинах нагревателем является камера сгорания. В них рабочее тело нагревается за счет тепла, выделяющегося при сгорании топлива. Количество теплоты, выделяющееся при сгорании топлива, вычисляется по формуле:

где ​\( q \)​ – удельная теплота сгорания топлива, ​\( m \)​ – масса топлива.

Холодильником чаще всего у реальных двигателей служит атмосфера.

Виды тепловых двигателей:

  • паровой двигатель;
  • турбина (паровая, газовая);
  • двигатель внутреннего сгорания (карбюраторный, дизельный);
  • реактивный двигатель.

Тепловые двигатели широко используются на всех видах транспорта: на автомобилях – двигатели внутреннего сгорания; на железнодорожном транспорте – дизельные двигатели (на тепловозах); на водном транспорте – турбины; в авиации – турбореактивные и реактивные двигатели. На тепловых и атомных электростанциях тепловые двигатели приводят в движение роторы генераторов переменного тока.

Проблемы энергетики и охрана окружающей среды

Тепловые двигатели широко применяются на транспорте и в энергетике (тепловые и атомные электростанции). Использование тепловых двигателей сильно влияет на состояние биосферы Земли. Можно выделить следующие вредные факторы:

  • при сжигании топлива используется кислород из атмосферы, что приводит к снижению содержания кислорода в воздухе;
  • при сгорании топлива в атмосферу выделяется углекислый газ. Концентрация углекислого газа в атмосфере повышается. Это изменяет прозрачность атмосферы, так как молекулы углекислого газа поглощают инфракрасное излучение, что ведет к повышению температуры (парниковый эффект);
  • при сжигании угля в атмосферу поступают азотные, серные соединения и соединения свинца, вредные для здоровья человека.

Решение проблемы охраны окружающей среды от вредного воздействия предприятий тепловой энергетики требует комплексного подхода. Массовыми загрязнителями при работе тепловых электростанций являются летучая зола, диоксид серы и оксиды азота.

Методы сокращения выбросов зависят от свойств топлива и условия его сжижения. Предотвращение загрязнения летучей золой достигается очисткой всего объема продуктов сгорания твердого топлива в высокоэффективных золоуловителях.

Сокращение выбросов оксидов азота с продуктами сгорания топлива на тепловых электростанциях, а также в парогазовых и газотурбинных установках обеспечивается, главным образом, технологией сжигания топлива.

Уменьшение выброса диоксида серы может быть достигнуто различными методами облагораживания и переработки топлива вне тепловых электростанций либо непосредственно на тепловых электростанциях, а также очисткой дымовых газов.

Контроль за выбросом вредных веществ электростанций осуществляется специальными приборами.

В ряде случаев достаточно эффективным решением вопросов очистки выбросов в атмосферу остается сооружение фильтров-уловителей и дымовых труб.

У дымовой трубы два назначения: первое — создавать тягу и тем самым заставлять воздух — обязательный участник процесса горения — в нужном количестве и с должной скоростью входить в топку; второе — отводить продукты горения (вредные газы и имеющиеся в дыме твердые частицы) в верхние слои атмосферы. Благодаря непрерывному турбулентному движению вредные газы и твердые частицы уносятся далеко от источника их возникновения и рассеиваются.

Для рассеивания сернистого ангидрида, содержащегося в дымовых трубах тепловых электростанций, сооружаются дымовые трубы высотой 180, 250 и 320 м. Тепловые электростанции России, работающие на твердом топливе, за год выбрасывают в отвалы около 100 млн т золы и шлаков. Зола и шлаки занимают большие площади земель, неблагоприятно влияют на окружающую среду.

Более половины всех загрязнений создает транспорт. Один из путей решения проблемы защиты окружающей среды заключается в переходе на дизельные двигатели, электродвигатели, повышение КПД.

Алгоритм решения задач раздела «Термодинамика»:

  • выделить систему тел и определить ее тип (замкнутая, адиабатически замкнутая, замкнутая в механическом смысле, незамкнутая);
  • выяснить, как изменяются параметры состояния ​\( (p,V,T) \)​ и внутренняя энергия каждого тела системы при переходе из одного состояния в другое;
  • записать уравнения, связывающие параметры двух состояний системы, формулы для расчета изменения внутренней энергии каждого тела системы при переходе из одного состояния в другое;
  • определить изменение механической энергии системы и работу внешних сил по изменению ее объема;
  • записать формулу первого закона термодинамики или закона сохранения и превращения энергии;
  • решить систему уравнений относительно искомой величины;
  • проверить решение.

Основные формулы раздела «Термодинамика»

Источник: https://fizi4ka.ru/egje-2018-po-fizike/termodinamika.html

Biz-books
Добавить комментарий