Как определить напряженность электрического поля если…

Напряженность поля: задачи второго уровня

Как определить напряженность электрического поля если...
Категория: Напряженность поля

В этой статье собраны не очень сложные задачи, однако тем, кто только начинает разбираться с этой темой, я рекомендую начать с задач попроще. Для решения предложенных в этой статье задач понадобится знание  элементарной геометрии.

Задача 1. Найти напряженность электрического поля в точке, находящейся посередине между точечными зарядами нКл и нКл. Расстояние между зарядами см. В какой точке прямой, проходящей через оба заряда, напряженность электрического поля равна ?

Задача 1.

Первый вопрос задачи. Напряженность, создаваемая первым зарядом:

Напряженность, создаваемая вторым зарядом:

Обратим внимание на то, что вектор напряженности направлен от первого заряда, а вектор – ко второму.

Итоговая напряженность поля в данной точке – векторная сумма напряженностей и . Но, так как направлены вектора будут в данном случае по одной прямой,  можно просто сложить их модули  (заряды разноименные и оба вектора имеют одно и то же направление):

Ответ: кВ/м

Второй вопрос задачи: обозначим расстояние до искомой точки . Тогда, поскольку, повторюсь, заряды разноименные и суммарная напряженность – векторная сумма двух разнонаправленных векторов, то очевидно, что эти вектора обязаны быть равными по длине, чтобы друг друга полностью компенсировать (погасить):

Можно воспользоваться свойством пропорции:

Решим квадратное уравнение:

Отрицательный корень отбрасываем, он не имеет физического смысла:

Ответ: 64,7 см – от  второго заряда.

Задача 2. Два заряда Кл и Кл помещены на расстоянии см друг от друга. Определить напряженность поля в точке, удаленной от первого заряда на см, и от второго на расстояние см.

Задача 2.

Точки расположения зарядов и точка, в которой будем определять напряженность, образуют прямоугольный (египетский) треугольник. Поэтому суммарную напряженность можно найти по теореме Пифагора (между векторами и угол в ), кроме того, оба вектора направлены от зарядов, так как оба они положительные.

Напряженность, создаваемая первым зарядом:

Напряженность, создаваемая вторым зарядом:

Теперь определим суммарную напряженность:

Ответ: В/м.

Задача 3. Электрическое поле создано двумя одинаковыми зарядами, находящимися на некотором расстоянии друг от друга.

На таком же расстоянии от одного из них по прямой линии, проходящей через оба заряда, напряженность электрического поля В/м.

Определить напряженность электрического поля  в точках пространства, находящихся на одинаковых расстояниях от зарядов, равных расстоянию между зарядами.

Задача 3.

Так как оба заряда одноименные, то напряженность поля в точке 3 является суммой векторов напряженностей и .

Найдем теперь напряженности поля в точках 1 и 2. Очевидно, что направления векторов различны, но модули напряженностей одинаковы.

Ответ: 0,346 В/м

Задача 4. Диполь образован двумя разноименными зарядами, по нКл каждый. Расстояние между зарядами см. Найти напряженность электрического поля: a) на продолжении оси диполя на расстоянии см от его центра; б) на перпендикуляре к оси диполя, проведенном через его середину, на том же расстоянии. Как убывает поле диполя при ?

На рисунке вектора изображены с учетом того, что заряд положительный, а – отрицательный.

Задача 4.

а)

Разность напряженностей (вектора направлены в разные стороны):

При

б) Определим сначала расстояния от зарядов до точки наблюдения:

Модули напряженностей:

Чтобы сложить вектора, понадобится знать косинус угла , а он равен синусу :

Тогда векторная сумма напряженностей равна:

При

Ответ: а) В/м, б) 1080 В/м

Задача 5. Тонкий стержень согнут в виде окружности радиусом м так, что между его концами остался воздушный промежуток м.  По стержню равномерно распределен заряд Кл.  Определить напряженность поля в центре окружности.

Задача 5.

Так как стержень согнут в кольцо, то вектора напряженностей ото всех элементарных элементов этого кольца направлены внутрь, поэтому вектора напряженностей от противолежащих элементов друг друга компенсируют.

Только вектора элементов, находящихся напротив разрыва, не будут скомпенсированы. Длина участка кольца, где находятся эти элементы, равна .

Так как заряд равномерно распределен по кольцу, найдем, какая часть заряда приходится на этот участок:

Тогда напряженность поля равна:

Ответ: 0,0761 В/м

Источник: https://easy-physic.ru/napryazhennost-polya-zadachi-vtorogo-urovnya/

Напряженность электрического поля

Как определить напряженность электрического поля если...

Напряженность электрического поля является векторной величиной, а значит имеет численную величину и направление. Величина напряженности электрического поля имеет свою размерность, которая зависит от способа ее вычисления.

Электрическая сила взаимодействия зарядов описывается как бесконтактное действие, а иначе говоря имеет место дальнодействие, то есть действие на расстоянии. Для того, чтобы описать такое дальнодействие удобно ввести понятие электрического поля и с его помощью объяснить действие на расстоянии.

Давайте возьмем электрический заряд, который мы обозначим символом Q. Этот электрический заряд создает электрическое поле, то есть он является источником действия силы.

Так как во вселенной всегда имеется хотя бы один положительный и хотя бы один отрицательный заряд, которые действую друг на друга на любом, даже бесконечно далеком расстоянии, то любой заряд является источником силы, а значит уместно описание создаваемого ими электрического поля.

В нашем случае заряд Q является источником электрического поля и мы будем его рассматривать именно как источник поля.

Напряженность электрического поля источника заряда может быть измерена с помощью любого другого заряда, находящегося где-то в его окрестностях.

Заряд, который используется для измерения напряженности электрического поля называют пробным зарядом, так как он используется для проверки напряженности поля.

Пробный заряд имеет некоторое количество заряда и обозначается символом q.

При помещении пробного заряда в электрическое поле источника силы (заряд Q), пробный заряд будет испытывать действие электрической силы – или притяжения, или отталкивания. Силу можно обозначить как это обычно принять в физике символом F. Тогда величину электрического поля можно определить просто как отношение силы к величине пробного заряда.

Если напряженность электрического поля обозначается символом E, то уравнение может быть переписано в символической форме как

Стандартные метрические единицы измерения напряженности электрического поля возникают из его определения. Таким образом напряженность электрического поля определяется как сила равная 1 Ньютону (Н) деленному на 1 Кулон (Кл). Напряженность электрического поля измеряется в Ньютон/Кулон или иначе Н/Кл. В системе СИ также измеряется в Вольт/метр.

Для понимания сути такого предмета как напряженность электрического поля гораздо важнее размерность в метрической системе в Н/Кл, потому как в такой размерность отражается происхождение такой характеристики как напряженность поля. Обозначение в Вольт/Метр делает понятие потенциала поля (Вольт) базовым, что в некоторых областях удобно, но не во всех.

В приведенном выше примере участвуют два заряда Q (источник) и qпробный. Оба этих заряда являются источником силы, но какой из них следует применять в вышеприведенной формуле? В формуле присутствует только один заряд и это пробный заряд q (не источник).

Напряженность электрического поля не зависит от количества пробного заряда q. На первый взгляд это может привести вас в замешательство, если, конечно, вы задумаетесь над этим. Беда в том, что не все имеют полезную привычку думать и пребывают в так называемом блаженном невежестве. Если вы не думаете, то и замешательства такого рода у вас и не возникнет.

Так как же напряженность электрического поля не зависит от q, если q присутствует в уравнении? Отличный вопрос! Но если вы подумаете об этом немного, вы сможете ответить на этот вопрос. Увеличение количества пробного заряда q – скажем, в 2 раза — увеличится и знаменатель уравнения в 2 раза.

Но в соответствии с Законом Кулона, увеличение заряда также увеличит пропорционально и порождаемую силу F. Увеличится заряд в 2 раза, тогда и сила F возрастет в то же количество раз. Так как знаменатель в уравнении увеличивается в два раза (или три, или четыре), то и числитель увеличится во столько же раз.

Эти два изменения компенсируют друг друга, так что можно смело сказать, что напряженность электрического поля не зависит от количества пробного заряда.

Таким образом, независимо от того, какого количества пробный заряд q используется в уравнении, напряженность электрического поляE в любой заданной точке вокруг заряда Q (источника) будет одинаковой при измерении или вычислении.

Более подробно о формуле напряженности электрического поля

Выше мы коснулись определения напряженности электрического поля в том, как она измеряется.

Теперь мы попробуем исследовать более развернутое уравнение с переменными, чтобы яснее представить саму суть вычисления и измерения напряженности электрического поля.

Из уравнения мы сможем увидеть, что именно влияет, а что нет. Для этого нам прежде всего потребуется вернутся к уравнению Закона Кулона.

Закон Кулона утверждает, что электрическая сила F между двумя зарядами прямо пропорциональна произведению количества этих зарядов и обратно пропорциональна квадрату расстояния между их центрами.

Если внести в уравнение Закона Кулона два наших заряда Q (источник) и q (пробный заряд), тогда мы получим следующую запись:

Если выражение для электрической силы F, как она определяется Законом Кулона подставить в уравнение для напряженности электрического поляE, которое приведено выше, тогда мы получим следующее уравнение:

Обратите внимание, что пробный заряд q был сокращен, то есть убран как в числителе так и в знаменателе. Новая формула для напряженности электрического поля E выражает напряженность поля в терминах двух переменных, которые влияют на нее.

Напряженность электрического поля зависит от количества исходного заряда Q и от расстоянии от этого заряда d до точки пространства, то есть геометрического места, в котором и определяется значение напряженности.

Таким образом у нас появилась возможность характеризовать электрическое поле через его напряженность.

Закон обратных квадратов

Как и все формулы в физике, формулы для напряженности электрического поля могут быть использованы для алгебраического решения задач (проблем) физики.

Точно также, как и любую другую формулу в ее алгебраической записи, можно исследовать и формулу напряженности электрического поля. Такое исследование способствует более глубокому пониманию сути физического явления и характеристик этого явления.

Одна из особенностей формулы напряженности поля является то, что она иллюстрирует обратную квадратичную зависимость между напряженностью электрического поля и расстоянием до точки в пространстве от источника поля.

Сила электрического поля, создаваемого в источнике заряде Q обратно пропорционально квадрату расстояния от источника. Иначе говорят, что искомая величина обратно пропорциональна квадрату.

Напряженность электрического поля зависит от геометрического места в пространстве, и ее величина уменьшается с увеличением расстояния.

Так, например, если расстояние увеличится в 2 раза, то напряженность уменьшится в 4 раза (22), если расстояния между уменьшится в 2 раза, то напряженность электрического поля увеличится в 4 раза (22).

Если же расстояние увеличивается в 3 раза, то напряженность электрического поля уменьшается в 9 раз (32). Если расстояние увеличивается в 4 раза, то напряженность электрического поля уменьшается в 16 (42).

Направление вектора напряженности электрического поля

Как упоминалось ранее, напряженность электрического поля является векторной величиной. В отличие от скалярной величиной, векторная величина является не полностью описанной, если не определено ее направление. Величина вектора электрического поля рассчитывается как величина силы на любой пробный заряд, расположенный в электрическом поле.

Сила, действующая на пробный заряд может быть направлена либо к источнику заряда или непосредственно от него. Точное направление силы зависит от знаков пробного заряд и источника заряда, имеют ли они тот же знак заряда (тогда происходит отталкивание) или же их знаки противоположные (происходит притяжение).

Чтобы решить проблему направления вектора электрического поля, направлен он к источнику или от источника были приняты правила, которые используются всеми учеными мира. Согласно этим правилам направление вектора всегда от заряда с положительным знаком полярности.

Это можно представить в виде силовых линий, которые выходят из зарядов положительных знаков и заходят в заряды отрицательных знаков.

Дата: 29.04.2015

© Valentin Grigoryev (Валентин Григорьев)

Источник: http://electricity-automation.com/page/napryazhennost-elektricheskogo-polya

Определение напряженности в любой точке электрического поля

Как определить напряженность электрического поля если...

Цель урока: дать понятие напряжённости электрического поля и ее определения в любой точке поля.

Задачи урока:

  • формирование понятия напряжённости электрического поля; дать понятие о линиях напряжённости и графическое представление электрического поля;
  • научить учащихся применять формулу E=kq/r2 в решении несложных задач на расчёт напряжённости.

Электрическое поле – это особая форма материи, о существовании которой можно судить только по ее действию. Экспериментально доказано, что существуют два рода зарядов, вокруг которых существуют электрические поля, характеризующиеся силовыми линиями.

Графически изображая поле, следует помнить, что линии напряженности электрического поля:

  1. нигде не пересекаются друг с другом;
  2. имеют начало на положительном заряде (или в бесконечности) и конец на отрицательном (или в бесконечности), т. е. являются незамкнутыми линиями;
  3. между зарядами нигде не прерываются.

Рис.1

Силовые линии положительного заряда:

Рис.2

Силовые линии отрицательного заряда:

Рис.3

Силовые линии одноименных взаимодействующих зарядов:

Рис.4

Силовые линии разноименных взаимодействующих зарядов:

Рис.5

Силовой характеристикой электрического поля является напряженность, которая обозначается буквой Е и имеет единицы измерения или . Напряженность является векторной величиной, так как определяется отношением силы Кулона к величине единичного положительного заряда

В результате преобразования формулы закона Кулона и формулы напряженности имеем зависимость напряженности поля от расстояния, на котором она определяется относительно данного заряда

где: k – коэффициент пропорциональности, значение которого зависит от выбора единиц электрического заряда.

В системе СИ Н·м2/Кл2,

где ε0 – электрическая постоянная, равная 8,85·10-12 Кл2/Н·м2;

q – электрический заряд (Кл);

r – расстояние от заряда до точки в которой определяется напряженность.

Направление вектора напряженности совпадает с направлением силы Кулона.

Электрическое поле, напряженность которого одинакова во всех точках пространства, называется однородным. В ограниченной области пространства электрическое поле можно считать приблизительно однородным, если напряженность поля внутри этой области меняется незначительно.

Общая напряженность поля нескольких взаимодействующих зарядов будет равна геометрической сумме векторов напряженности, в чем и заключается принцип суперпозиции полей:

Рассмотрим несколько случаев определения напряженности.

1. Пусть взаимодействуют два разноименных заряда. Поместим точечный положительный заряд между ними, тогда в данной точке будут действовать два вектора напряженности, направленные в одну сторону:

Е31 – напряженность точечного заряда 3 со стороны заряда 1;

Е32 – напряженность точечного заряда 3 со стороны заряда 2.

Согласно принципу суперпозиции полей общая напряженность поля в данной точке равна геометрической сумме векторов напряженности Е31 и Е32.

Напряженность в данной точке определяется по формуле:

Е = kq1/x2 + kq2/(r – x)2

где: r – расстояние между первым и вторым зарядом;

х – расстояние между первым и точечным зарядом.

Рис.6

2. Рассмотрим случай, когда необходимо найти напряженность в точке удаленной на расстояние а от второго заряда. Если учесть, что поле первого заряда больше, чем поле второго заряда, то напряженность в данной точке поля равна геометрической разности напряженности Е31 и Е32.

Формула напряженности в данной точке равна:

Е = kq1/(r + a)2 – kq2/a2

Где: r – расстояние между взаимодействующими зарядами;

а – расстояние между вторым и точечным зарядом.

Рис.7

3. Рассмотрим пример, когда необходимо определить напряженность поля в некоторой удаленности и от первого и от второго заряда, в данном случае на расстоянии r от первого и на расстоянии bот второго заряда.

Так как одноименные заряды отталкиваются , а разноименные притягиваются, имеем два вектора напряженности исходящие из одной точки, то для их сложения можно применить метод противоположному углу параллелограмма будет являться суммарным вектором напряженности.

Алгебраическую сумму векторов находим из теоремы Пифагора:

Е = (Е312 +Е322)1/2

Следовательно:

Е = ((kq1/r2 )2 + (kq2/b2)2)1/2

Рис.8

Исходя из данной работы, следует, что напряженность в любой точке поля можно определить, зная величины взаимодействующих зарядов, расстояние от каждого заряда до данной точки и электрическую постоянную.

4. Закрепление темы.

Проверочная работа.

Вариант № 1.

1. Продолжить фразу: “электростатика – это …

2. Продолжить фразу: электрическое поле – это ….

3. Как направлены силовые линии напряженности данного заряда?

4. Определить знаки зарядов:

5. Указать вектор напряженности.

6. Определить напряженность в точке В исходя из суперпозиции полей.

Своя оценка работыОценка работы другим учеником

Вариант № 2.

1. Продолжить фразу: “электростатика – это …

2. Продолжить фразу: напряженностью называется …

3. Как направлены силовые линии напряженности данного заряда?

4. Определить заряды.

5. Указать вектор напряженности.

6. Определить напряженность в точке В исходя из суперпозиции полей.

Своя оценка работыОценка работы другим учеником

Задачи на дом:

1. Два заряда q1 = +3·10-7 Кл и q2 = −2·10-7 Кл находятся в вакууме на расстоянии 0,2 м друг от друга.

Определите напряженность поля в точке С, расположенной на линии, соединяющей заряды, на расстоянии 0,05 м вправо от заряда q2.

2. В некоторой точке поля на заряд 5·10-9 Кл действует сила 3·10-4 Н.

Найти напряженность поля в этой точке и определите величину заряда, создающего поле, если точка удалена от него на 0,1 м.

14.06.2011

Источник: https://urok.1sept.ru/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/601504/

Напряженность электрического поля – решение задач по физике

Как определить напряженность электрического поля если...

Бесплатные решения задач из сборника А.Г. Чертова и А.А. Воробьева “Задачник по физике”.

14.1. Определить напряженность E электрического поля, создаваемого точечным зарядом Q=10 нКл на расстоянии r=10 см от него. Диэлектрик — масло.

14.2. Расстояние d между двумя точечными зарядами Q1=+8 нКл и Q2=-5,3 нКл равно 40 см. Вычислить напряженность E поля в точке, лежащей…

14.3. Электрическое поле создано двумя точечными зарядами Q1=10 нКл и Q2=-20 нКл, находящимися на расстоянии d=20 см друг от друга. Определить…

14.4. Расстояние d между двумя точечными положительными зарядами Q1=9Q и Q2=Q равно 8 см. На каком расстоянии r от первого заряда находится…

14.5. Два точечных заряда Q1=2Q и Q2=-Q находятся на расстоянии d друг от друга. Найти положение точки на прямой, проходящей через эти…

14.6. Электрическое поле создано двумя точечными зарядами Q1=40 нКл и Q2=-10 нКл, находящимися на расстоянии d=10 см друг от друга. Определить…

14.8. Полусфера несет заряд, равномерно распределенный с поверхностной плотностью σ=1 нКл/м2. Найти напряженность E электрического поля в геометрическом…

14.9. На металлической сфере радиусом R=10 см находится заряд Q=1 нКл. Определить напряженность E электрического поля в следующих точках: 1) на расстоянии r1=8…

14.10. Две концентрические металлические заряженные сферы радиусами R1=6 см и R2=10 см несут соответственно заряды Q1=1 нКл и…

14.11. Очень длинная тонкая прямая проволока несет заряд, равномерно распределенный по всей ее длине. Вычислить линейную плотность τ заряда, если напряженность…

14.13. Прямой металлический стержень диаметром d=5 см и длиной l=4 м несет равномерно распределенный по его поверхности заряд Q=500 нКл. Определить напряженность…

14.15. Две длинные тонкостенные коаксиальные трубки радиусами R1=2 см и R2=4 см несут заряды, равномерно распределенные по длине с линейными…

14.16. На отрезке тонкого прямого проводника длиной l=10 см равномерно распределен заряд с линейной плотностью τ=3 мкКл/м. Вычислить напряженность E, создаваемую…

14.17. Тонкий стержень длиной l=12 см заряжен с линейной плотностью τ=200 нКл/м. Найти напряженность Е электрического поля в точке, находящейся на расстоянии…

14.18. Тонкий стержень длиной l=10 см заряжен с линейной плотностью τ=400 нКл/м. Найти напряженность E электрического поля в точке, расположенной на перпендикуляре…

14.21. Электрическое поле создано двумя бесконечными параллельными пластинами, несущими одинаковый равномерно распределенный по площади заряд (σ=1 нКл/м2)…

14.22. Электрическое поле создано двумя бесконечными параллельными пластинами, несущими равномерно распределенный по площади заряд с поверхностными плотностями…

14.25. Две бесконечные параллельные пластины равномерно заряжены с поверхностной плотностью σ1=10 нКл/м2 и σ2=-30…

14.27. Эбонитовый сплошной шар радиусом R=5 см несет заряд, равномерно распределенный с объемной плотностью ρ= 10 нКл/м3. Определить напряженность…

14.28. Полый стеклянный шар несет равномерно распределенный по объему заряд. Его объемная плотность ρ=100 нКл/м3. Внутренний радиус R1…

14.29. Длинный парафиновый цилиндр радиусом R=2 см несет заряд, равномерно распределенный по объему с объемной плотностью ρ=10 нКл/м3. Определить…

14.30. Большая плоская пластина толщиной d=1 см несет заряд, равномерно распределенный по объему с объемной плотностью ρ=100 нКл/м3. Найти напряженность…

14.31. Лист стекла толщиной d=2 см равномерно заряжен с объемной плотностью ρ=1 мкКл/м3. Определить напряженность E и смещение D электрического…

14.32. На некотором расстоянии a=5 см от бесконечной проводящей плоскости находится точечный заряд Q=1 нКл. Определить силу F, действующую на заряд со стороны…

14.35. Большая металлическая пластина расположена в вертикальной плоскости и соединена с землей (рис. 14.13). На расстоянии a=10 см от пластины находится неподвижная…

14.36. Тонкая нить несет равномерно распределенный по длине заряд с линейной плотностью τ=2 мкКл/м. Вблизи средней части нити на расстоянии r=1 см, малом…

14.37. Большая металлическая пластина несет равномерно распределенный по поверхности заряд (σ=10 нКл/м2). На малом расстоянии от пластины находится…

14.38. Точечный заряд Q=1 мкКл находится вблизи большой равномерно заряженной пластины против ее середины. Вычислить поверхностную плотность σ заряда пластины,…

14.41. Две одинаковые круглые пластины площадью по S=100 см2 каждая расположены параллельно друг другу. Заряд Q1 одной пластины равен +100…

14.42. Плоский конденсатор состоит из двух пластин, разделенных стеклом. Какое давление p производят пластины на стекло перед пробоем, если напряженность E электрического…

14.43. Две параллельные, бесконечно длинные прямые нити несут заряд, равномерно распределенный по длине с линейными плотностями τ1=0,1 мкКл/м и…

14.44. Прямая, бесконечная, тонкая нить несет равномерно распределенный по длине заряд (τ1=1 мкКл/м). В плоскости, содержащей нить, перпендикулярно…

14.45. Металлический шар имеет заряд Q1=0,1 мкКл. На расстоянии, равном радиусу шара, от его поверхности находится конец нити, вытянутой вдоль силовой…

14.47. Бесконечная прямая нить несет равномерно распределенный заряд с линейной плотностью τ1=1 мкКл/м. Соосно с нитью расположено тонкое кольцо,…

14.48. Две бесконечно длинные равномерно заряженные тонкие нити (τ1=τ2=τ=1 мкКл/м) скрещены под прямым углом друг к другу. Определить…

14.50. Плоская квадратная пластина со стороной длиной a, равной 10 см, находится на некотором расстоянии от бесконечной равномерно заряженной (σ=1 мкКл/м2)…

14.51. В центре сферы радиусом R=20 см находится точечный заряд Q=10 нКл. Определить поток ФE вектора напряженности через часть сферической поверхности…

14.52. В вершине конуса с телесным углом ω=0,5 ср находится точечный заряд Q=30 нКл. Вычислить поток Ψ электрического смещения через площадку, ограниченную…

Источник: http://exir.ru/other/chertov/napryazhennost_elektricheskogo_polya.htm

Электрическое поле. Напряженность. Линии напряженности. урок. Физика 10 Класс

Как определить напряженность электрического поля если...

Тема данного урока – это изучение вопросов, связанных с понятием электрического поля. Мы познакомимся с очень важной характеристикой электрического поля – напряженностью – и рассмотрим изображение различных электрических полей с помощью силовых линий.

Закон Кулона, изученный на прошлом уроке, был установлен экспериментально и справедлив для покоящихся заряженных тел.

Каким же образом происходит взаимодействие заряженных тел на расстоянии? До некоторых пор при изучении электрических взаимодействий бок о бок развивались две принципиально разные теории: теория близкодействия и теория дальнодействия (действия на расстоянии).

Теория близкодействия заключается в том, что заряженные тела взаимодействуют друг с другом посредством промежуточного звена (например, цепь в задаче о поднятии ведра из колодца является промежуточным звеном, посредством которого мы воздействуем на ведро, то есть поднимаем его).

Теория дальнодействия гласит, что заряженные тела взаимодействуют через пустоту. Шарль Кулон придерживался именно этой теории и говорил, что заряженные тела «чувствуют» друг друга. В начале XIX века конец спорам положил Майкл Фарадей (рис. 1).

В работах, связанных с электрическим полем, он установил, что между заряженными телами существует некий объект, который и осуществляет действие заряженных тел друг на друга. Работы Майкла Фарадея были подтверждены Джеймсом Максвеллом (рис. 2).

Он показал, что действие одного заряженного тела на другое распространяется за конечное время, таким образом, между заряженными телами должно существовать промежуточное звено, через которое осуществляется взаимодействие.

Рис. 1. Майкл Фарадей (Источник)

Рис. 2. Джеймс Клерк Максвелл (Источник)

Определение: Электрическое поле – это особая форма материи, которая создается покоящимися зарядами и определяется действием на другие заряды.

Электрическое поле характеризуется определенными величинами. Одна из них называется напряженностью.

Вспомним, что по закону Кулона, сила взаимодействия двух зарядов:

Максвелл показал, что это взаимодействие осуществляется за конечное время:

где l – расстояние между заряженными частицами, а c – скорость света, скорость распространения электромагнитных волн.

Рассмотрим эксперимент по взаимодействию двух зарядов. Пусть электрическое поле создается положительным зарядом +q0, и в это поле на некотором расстоянии помещается пробный, точечный положительный заряд +q (рис. 3,а).

Согласно закону Кулона, на пробный заряд будет действовать сила электростатического взаимодействия со стороны заряда, создающего электрическое поле. Тогда отношение этой силы к величине пробного заряда будет характеризовать действие электрического поля в данной точке.

Если же в эту точку будет помещен вдвое больший пробный заряд, то сила взаимодействия также увеличится вдвое (рис. 3,б). Аналогичным образом отношение силы к величине пробного заряда снова даст значение действия электрического поля в данной точке.

Так же действие электрического поля определяется и в том случае, если пробный заряд отрицательный (рис. 3,в).

Рис. 3. Сила электростатического взаимодействия двух точечных зарядов

Таким образом, в точке, где находится пробный заряд, поле характеризуется величиной:

Эта величина и называется напряженностью электрического поля. Напряженность поля в данной точке не зависит от величины пробного заряда: во всех трех случаях отношение силы к величине заряда – постоянная величина. Единица измерения напряженности:

Напряженность – векторная величина, является силовой характеристикой электрического поля, направлена в ту же сторону, куда и сила электростатического взаимодействия. Она показывает, с какой силой электрическое поле действует на помещенный в него заряд.

Рассмотрим напряженность электрического поля уединенного точечного заряда либо заряженной сферы.

Из определения напряженности следует, что для случая взаимодействия двух точечных зарядов, зная силу их кулоновского взаимодействия, можем получить величину напряженности электрического поля, которое создается зарядом q0 в точке на расстоянии r от него до точки, в которой исследуется электрическое поле:

Данная формула показывает, что напряженность поля точечного заряда изменяется обратно пропорционально квадрату расстояния от данного заряда, то есть, например, при увеличении расстояния в два раза, напряженность уменьшается в четыре раза.     

Попытаемся теперь охарактеризовать электростатическое поле нескольких зарядов. В этом случае необходимо воспользоваться сложением векторных величин напряженностей всех зарядов.

Внесем пробный заряд и запишем сумму векторов сил, действующих на этот заряд. Результирующее значение напряженности получится при разделении значений этих сил на величину пробного заряда.

Данный метод называется принципом суперпозиции.

Напряженность электростатического поля принято изображать графически при помощи силовых линий, которые также называют линиями напряженности. Такое изображение можно получить, построив вектора напряженности поля в как можно большем количестве точек вблизи данного заряда или целой системы заряженных тел.

Рис. 4. Линии напряженности электрического поля точечного заряда (Источник)

Рассмотрим несколько примеров изображения силовых линий. Линии напряженности выходят из положительного заряда (рис. 4,а), то есть положительный заряд является источником силовых линий. Заканчиваются линии напряженности на отрицательном заряде (рис. 4,б).

Рассмотрим теперь систему, состоящую из положительного и отрицательного зарядов, находящихся на конечном расстоянии друг от друга (рис. 5). В этом случае линии напряженности направлены от положительного заряда к отрицательному.

Большой интерес представляет электрическое поле между двумя бесконечными плоскостями. Если одна из пластин заряжена положительно, а другая отрицательно, то в зазоре между плоскостями создается однородное электростатическое поле, линии напряженности которого оказываются параллельными друг другу (рис. 6). 

Рис. 5. Линии напряженности системы двух зарядов (Источник)  

Рис. 6. Линии напряженности поля между заряженными пластинами (Источник)

В случае неоднородного электрического поля величина напряженности определяется густотой силовых линий: там, где силовые линии гуще, величина напряженности поля больше (рис. 7).

Рис. 7. Неоднородное электрическое поле (Источник)

Определение: Линиями напряженности называют непрерывные линии, касательные к которым в каждой точке совпадают с векторами напряженности в этой точке.

Линии напряженности начинаются на положительных зарядах, заканчиваются на отрицательных и являются непрерывными.

Изображать электрическое поле с помощью силовых линий мы можем так, как сами посчитаем нужным, то есть число силовых линий, их густота ничем не ограничивается. Но при этом необходимо учитывать направление векторов напряженности поля и их абсолютные величины.

Очень важно следующее замечание. Как говорилось ранее, закон Кулона применим только для точечных покоящихся зарядов, а также заряженных шариков, сфер. Напряженность же позволяет характеризовать электрическое поле вне зависимости от формы заряженного тела, которое это поле создает.

Список литературы

  1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика: учеб. для 10 кл. общеобразоват. учреждений: базовый и профил. уровни. – М.: Просвещение, 2008.
  2. Касьянов В.А. Физика. 10 кл.: учеб. для общеобразоват. учеб. заведений. – М.: Дрофа, 2000.
  3. Рымкевич А.П. Физика. Задачник. 10-11 кл.: пособие для общеобразоват. учреждений. – М.: Дрофа, 2013.
  4. Генденштейн Л.Э., Дик Ю.И. Физика. 10 класс. В 2 ч. Ч. 1. Учебник для общеобразовательных учреждений (базовый уровень) – М.: Мнемозина, 2009.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Nauka.guskoff.ru (Источник).
  2. (Источник).
  3. Physics.ru (Источник).

Домашнее задание

  1. Стр. 378: № 1–3. Касьянов В.А. Физика. 10 кл.: учеб. для общеобразоват. учеб. заведений. – М.: Дрофа, 2000. (Источник)
  2. С каким ускорением движется электрон в поле напряженностью 10 кВ/м?
  3. В вершинах равностороннего треугольника со стороной a находятся заряды +q, +q и –q. Найти напряженность поля Е в центре треугольника.

Источник: https://interneturok.ru/lesson/physics/10-klass/osnovy-elektrodinamiki-2/elektricheskoe-pole-napryazhennost-linii-napryazhennosti

Biz-books
Добавить комментарий