Как определить напряженность E электрического поля…

Электрическое поле. Напряженность. Линии напряженности. урок. Физика 10 Класс

Как определить напряженность E электрического поля...

Тема данного урока – это изучение вопросов, связанных с понятием электрического поля. Мы познакомимся с очень важной характеристикой электрического поля – напряженностью – и рассмотрим изображение различных электрических полей с помощью силовых линий.

Закон Кулона, изученный на прошлом уроке, был установлен экспериментально и справедлив для покоящихся заряженных тел.

Каким же образом происходит взаимодействие заряженных тел на расстоянии? До некоторых пор при изучении электрических взаимодействий бок о бок развивались две принципиально разные теории: теория близкодействия и теория дальнодействия (действия на расстоянии).

Теория близкодействия заключается в том, что заряженные тела взаимодействуют друг с другом посредством промежуточного звена (например, цепь в задаче о поднятии ведра из колодца является промежуточным звеном, посредством которого мы воздействуем на ведро, то есть поднимаем его).

Теория дальнодействия гласит, что заряженные тела взаимодействуют через пустоту. Шарль Кулон придерживался именно этой теории и говорил, что заряженные тела «чувствуют» друг друга. В начале XIX века конец спорам положил Майкл Фарадей (рис. 1).

В работах, связанных с электрическим полем, он установил, что между заряженными телами существует некий объект, который и осуществляет действие заряженных тел друг на друга. Работы Майкла Фарадея были подтверждены Джеймсом Максвеллом (рис. 2).

Он показал, что действие одного заряженного тела на другое распространяется за конечное время, таким образом, между заряженными телами должно существовать промежуточное звено, через которое осуществляется взаимодействие.

Рис. 1. Майкл Фарадей (Источник)

Рис. 2. Джеймс Клерк Максвелл (Источник)

Определение: Электрическое поле – это особая форма материи, которая создается покоящимися зарядами и определяется действием на другие заряды.

Электрическое поле характеризуется определенными величинами. Одна из них называется напряженностью.

Вспомним, что по закону Кулона, сила взаимодействия двух зарядов:

Максвелл показал, что это взаимодействие осуществляется за конечное время:

где l – расстояние между заряженными частицами, а c – скорость света, скорость распространения электромагнитных волн.

Рассмотрим эксперимент по взаимодействию двух зарядов. Пусть электрическое поле создается положительным зарядом +q0, и в это поле на некотором расстоянии помещается пробный, точечный положительный заряд +q (рис. 3,а).

Согласно закону Кулона, на пробный заряд будет действовать сила электростатического взаимодействия со стороны заряда, создающего электрическое поле. Тогда отношение этой силы к величине пробного заряда будет характеризовать действие электрического поля в данной точке.

Если же в эту точку будет помещен вдвое больший пробный заряд, то сила взаимодействия также увеличится вдвое (рис. 3,б). Аналогичным образом отношение силы к величине пробного заряда снова даст значение действия электрического поля в данной точке.

Так же действие электрического поля определяется и в том случае, если пробный заряд отрицательный (рис. 3,в).

Рис. 3. Сила электростатического взаимодействия двух точечных зарядов

Таким образом, в точке, где находится пробный заряд, поле характеризуется величиной:

Эта величина и называется напряженностью электрического поля. Напряженность поля в данной точке не зависит от величины пробного заряда: во всех трех случаях отношение силы к величине заряда – постоянная величина. Единица измерения напряженности:

Напряженность – векторная величина, является силовой характеристикой электрического поля, направлена в ту же сторону, куда и сила электростатического взаимодействия. Она показывает, с какой силой электрическое поле действует на помещенный в него заряд.

Рассмотрим напряженность электрического поля уединенного точечного заряда либо заряженной сферы.

Из определения напряженности следует, что для случая взаимодействия двух точечных зарядов, зная силу их кулоновского взаимодействия, можем получить величину напряженности электрического поля, которое создается зарядом q0 в точке на расстоянии r от него до точки, в которой исследуется электрическое поле:

Данная формула показывает, что напряженность поля точечного заряда изменяется обратно пропорционально квадрату расстояния от данного заряда, то есть, например, при увеличении расстояния в два раза, напряженность уменьшается в четыре раза.     

Попытаемся теперь охарактеризовать электростатическое поле нескольких зарядов. В этом случае необходимо воспользоваться сложением векторных величин напряженностей всех зарядов.

Внесем пробный заряд и запишем сумму векторов сил, действующих на этот заряд. Результирующее значение напряженности получится при разделении значений этих сил на величину пробного заряда.

Данный метод называется принципом суперпозиции.

Напряженность электростатического поля принято изображать графически при помощи силовых линий, которые также называют линиями напряженности. Такое изображение можно получить, построив вектора напряженности поля в как можно большем количестве точек вблизи данного заряда или целой системы заряженных тел.

Рис. 4. Линии напряженности электрического поля точечного заряда (Источник)

Рассмотрим несколько примеров изображения силовых линий. Линии напряженности выходят из положительного заряда (рис. 4,а), то есть положительный заряд является источником силовых линий. Заканчиваются линии напряженности на отрицательном заряде (рис. 4,б).

Рассмотрим теперь систему, состоящую из положительного и отрицательного зарядов, находящихся на конечном расстоянии друг от друга (рис. 5). В этом случае линии напряженности направлены от положительного заряда к отрицательному.

Большой интерес представляет электрическое поле между двумя бесконечными плоскостями. Если одна из пластин заряжена положительно, а другая отрицательно, то в зазоре между плоскостями создается однородное электростатическое поле, линии напряженности которого оказываются параллельными друг другу (рис. 6). 

Рис. 5. Линии напряженности системы двух зарядов (Источник)  

Рис. 6. Линии напряженности поля между заряженными пластинами (Источник)

В случае неоднородного электрического поля величина напряженности определяется густотой силовых линий: там, где силовые линии гуще, величина напряженности поля больше (рис. 7).

Рис. 7. Неоднородное электрическое поле (Источник)

Определение: Линиями напряженности называют непрерывные линии, касательные к которым в каждой точке совпадают с векторами напряженности в этой точке.

Линии напряженности начинаются на положительных зарядах, заканчиваются на отрицательных и являются непрерывными.

Изображать электрическое поле с помощью силовых линий мы можем так, как сами посчитаем нужным, то есть число силовых линий, их густота ничем не ограничивается. Но при этом необходимо учитывать направление векторов напряженности поля и их абсолютные величины.

Очень важно следующее замечание. Как говорилось ранее, закон Кулона применим только для точечных покоящихся зарядов, а также заряженных шариков, сфер. Напряженность же позволяет характеризовать электрическое поле вне зависимости от формы заряженного тела, которое это поле создает.

Список литературы

  1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика: учеб. для 10 кл. общеобразоват. учреждений: базовый и профил. уровни. – М.: Просвещение, 2008.
  2. Касьянов В.А. Физика. 10 кл.: учеб. для общеобразоват. учеб. заведений. — М.: Дрофа, 2000.
  3. Рымкевич А.П. Физика. Задачник. 10-11 кл.: пособие для общеобразоват. учреждений. – М.: Дрофа, 2013.
  4. Генденштейн Л.Э., Дик Ю.И. Физика. 10 класс. В 2 ч. Ч. 1. Учебник для общеобразовательных учреждений (базовый уровень) – М.: Мнемозина, 2009.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Nauka.guskoff.ru (Источник).
  2. (Источник).
  3. Physics.ru (Источник).

Домашнее задание

  1. Стр. 378: № 1–3. Касьянов В.А. Физика. 10 кл.: учеб. для общеобразоват. учеб. заведений. — М.: Дрофа, 2000. (Источник)
  2. С каким ускорением движется электрон в поле напряженностью 10 кВ/м?
  3. В вершинах равностороннего треугольника со стороной a находятся заряды +q, +q и –q. Найти напряженность поля Е в центре треугольника.

Источник: https://interneturok.ru/lesson/physics/10-klass/osnovy-elektrodinamiki-2/elektricheskoe-pole-napryazhennost-linii-napryazhennosti

Напряженность электрического поля

Как определить напряженность E электрического поля...

Этим параметром обозначают силовое воздействие на заряд в определенной точке пространства. Напряженность учитывают в процессах распространения радиоволн, при конструировании электродвигателей, для решения других задач. В данной публикации приведены теоретические знания и методики расчетов.

Напряженность эл. поля можно изобразить силовыми линиями

Напряжённость электрического поля в классической электродинамике

Для лучшего понимания темы необходимо напомнить несколько базовых определений. Существуют отрицательные и положительные электрические заряды.

Каждый из них не зависит от системы координат, что подразумевает отсутствие влияния скорости. В изолированном объеме сумма зарядов не изменяется.

Базовой величиной считают Кулон, который соответствует прохождению тока через единичную площадь сечения проводника за одну секунду.

Электрическое поле:

  • создается зарядами;
  • распространяется со скоростью света;
  • не ограничено в свободном пространстве.

Описывает напряженность электрического поля формула с векторными составляющими:

E=F/q0,

где:

  • E – это вектор напряженности, который зависит от координат в пространстве по осям Х, Y, Z и времени;
  • F – сила, оказывающая воздействие на единичный точечный заряд q0.

Вместе с вектором магнитной индукции напряженность (Е) формирует электромагнитное поле. Суммарное воздействие сил образует тензор. Вместе с зарядом это главные параметры электродинамики.

Как направлен вектор электрического поля

Закон Ома для неоднородного участка

Вектор поля надо направить в сторону от положительного заряда и в обратном направлении – к отрицательному. Это определение справедливо для одной точки. Так как идеальные условия отсутствуют, в реальной ситуации приходится учитывать взаимодействие зарядов и соответствующее образование силовых линий.

Поле не является однородным, что демонстрируют с помощью разных расстояний между отдельными линиями.

В примере с пластинами близкое расположение параллельных проводников позволяет обеспечить одинаковую напряженность в рабочей зоне. Все силовые линии бесконечные.

Они начинаются на положительном заряде и заканчиваются на отрицательном. Таким образом, направление вектора напряженности будет всегда в сторону уменьшения потенциала.

Сила действия электромагнитного поля на заряженные частицы

Полное силовое воздействие на частицу с учетом магнитной компоненты можно определить с помощью расширенной формулы:

F=Eq0+ q0v * B.

Здесь «*» обозначает умножение векторов скорости (v) заряженной частицы и магнитной индукции (B).

Эта формула напряженности поля предполагает единичный заряд точечного объекта. Вычисленные параметры аппроксимируют на крупные тела с применением соответствующих математических формул.

Уравнения Максвелла

Особенности монтажа электрического оборудования

Этими уравнениями описывают трансформацию электрической и магнитной составляющих полей с учетом плотностей тока (j) и заряда (p). Многие типовые задачи вполне можно решить с их помощью. Для исследования взаимного воздействия нескольких систем удобнее пользоваться матричным или интегральным представлением.

Линейные уравнения Максвелла

Закон Кулона

С помощью этих формул показано, как найти напряженность при взаимодействии точечных зарядов. Для исключения лишних влияний подразумевается размещение в безвоздушной среде с электрической изоляцией от окружающего пространства. В таких условиях сила будет увеличиваться прямо пропорционально величине зарядов и обратно – квадрату дистанции между данными точками.

Закон обратных квадратов

Это соотношение – производная от рассмотренного выше закона Кулона. В идеальных условиях сила воздействия будет уменьшаться обратно пропорционально квадрату расстояния между зарядами.

«Материальные уравнения»

Для решения многих практических задач вполне достаточна ограниченная точность. С помощью «материальных» уравнений выполняют расчеты различных электрических цепей.

Уместный пример – закон Ома. Он был создан в ходе измерения электрических параметров. В начальном виде формула (Х=П/L+B) состояла из следующих компонентов:

  • Х – показания измерительного устройства (гальванометра), включенного в разрыв электрической цепи;
  • П – параметры источника питания, заставляющие стрелку прибора отклоняться на определенный угол;
  • L – длина соединительных проводов;
  • B – общие свойства установки.

Несложно догадаться, что в современном представлении это известный закон, показывающий взаимное влияние основных параметров полной электрической цепи:

I = E/R+r,

где:

  • I – ток;
  • E – ЭДС (напряжение);
  • R и r – сопротивление подключенных компонентов и самого источника питания, соответственно.

Связь с потенциалами

Для отображения этих компонентов удобно пользоваться векторным представлением. Сначала можно выразить работу (А), которую совершает электрическое поле (E) при перемещении заряда (q) на определенное расстояние (L):

A=E*q*L.

Далее ту же величину отображают через разницу потенциалов:

A=q*(ϕ1-ϕ2)=q*U.

Итоговая формула:

E=U/L.

Точнее будет использовать векторное выражение напряженности и передвижения.

Электростатика

Этот раздел электродинамики описывает частный случай, когда заряженные тела находятся в статичном состоянии. Такая ситуация значительно упрощает расчеты. Для практического примера можно создать электростатический конденсатор.

Устанавливают две плоскости одинаковой размерности параллельно на небольшом расстоянии, разделяют слоем диэлектрика. Если создать разницу потенциалов, между поверхностями образуется поле. В такой конструкции накапливается электрический заряд. Какой будет емкость, можно узнать с помощью этой формулы:

C=Q/ (ϕ1-ϕ2)=Q/U=e*S/d,

где:

  • e – проницаемость диэлектрика;
  • e0 – электрическая постоянная (8,85*10-12 Ф/м);
  • S – площадь пластин;
  • D – расстояние между ними.

Чтобы зарядить конденсатор до нужной емкости, надо затратить энергию W=(e*e0*E2/2)*S*D. На рисунке показано, как изменять рабочие параметры сборки при последовательном и параллельном соединении модулей.

Теорема Гаусса

Эта теорема определяет пропорциональность потока вектора напряженности электрического поля (Ф) заряду (Q), который заключен в произвольную поверхность замкнутого типа:

Ф=4π*Q.

Напряжённость электрического поля точечного заряда

В этом случае можно пользоваться рассмотренным выше законом Кулона. В следующих разделах представлены формулы для вычисления в разных системах единиц.

В единицах СИ

В этой системе базовой выбрана сила тока, поэтому кулон является производной величиной.

Основная формула:

F=k*(q1*q2/r122).

Здесь коэффициент k=1/(4π*e0).

Для системы СГС

Здесь, как и в предыдущем примере, выбран единичный заряд – «точка». Основные правила характеризуют физические процессы аналогично. Разница лишь в постоянных величинах. В данном случае коэффициент k обратно пропорционален диэлектрической проницаемости (е) среды.

Напряженность электрического поля произвольного распределения зарядов

В этом варианте для получения результата надо сложить вектора каждого заряда:

Еобщ=Е1+Е2+…+En.

Чтобы обеспечить непрерывность линии напряженности, берут интеграл соответствующей области. Построить распределение силовых линий можно с помощью расчета перемещения вектора по всем точкам.

Системы единиц

Отмеченные ниже различия надо учитывать, чтобы корректно пользоваться формулами, справочными данными. В современной системе СИ напряженность измеряется в вольтах на метр. Однако до сих пор сохраняется альтернативный вариант (СГС), точнее две подсистемы: СГСМ и СГСЭ. Измерять параметры без ошибок помогут следующие данные.

Таблица пересчета напряженности

СистемаЗначениеЕдиницы
СИ1Вольт/метр (Ньютон/Кулон)
СГСМ106Абвольт/см
СГСЭ106с-1Статвольт/см

Источник: https://amperof.ru/teoriya/napryazhennost-elektricheskogo-polya.html

Напряженность электрического поля — решение задач по физике

Как определить напряженность E электрического поля...

Бесплатные решения задач из сборника А.Г. Чертова и А.А. Воробьева «Задачник по физике».

14.1. Определить напряженность E электрического поля, создаваемого точечным зарядом Q=10 нКл на расстоянии r=10 см от него. Диэлектрик — масло.

14.2. Расстояние d между двумя точечными зарядами Q1=+8 нКл и Q2=-5,3 нКл равно 40 см. Вычислить напряженность E поля в точке, лежащей…

14.3. Электрическое поле создано двумя точечными зарядами Q1=10 нКл и Q2=-20 нКл, находящимися на расстоянии d=20 см друг от друга. Определить…

14.4. Расстояние d между двумя точечными положительными зарядами Q1=9Q и Q2=Q равно 8 см. На каком расстоянии r от первого заряда находится…

14.5. Два точечных заряда Q1=2Q и Q2=-Q находятся на расстоянии d друг от друга. Найти положение точки на прямой, проходящей через эти…

14.6. Электрическое поле создано двумя точечными зарядами Q1=40 нКл и Q2=-10 нКл, находящимися на расстоянии d=10 см друг от друга. Определить…

14.8. Полусфера несет заряд, равномерно распределенный с поверхностной плотностью σ=1 нКл/м2. Найти напряженность E электрического поля в геометрическом…

14.9. На металлической сфере радиусом R=10 см находится заряд Q=1 нКл. Определить напряженность E электрического поля в следующих точках: 1) на расстоянии r1=8…

14.10. Две концентрические металлические заряженные сферы радиусами R1=6 см и R2=10 см несут соответственно заряды Q1=1 нКл и…

14.11. Очень длинная тонкая прямая проволока несет заряд, равномерно распределенный по всей ее длине. Вычислить линейную плотность τ заряда, если напряженность…

14.13. Прямой металлический стержень диаметром d=5 см и длиной l=4 м несет равномерно распределенный по его поверхности заряд Q=500 нКл. Определить напряженность…

14.15. Две длинные тонкостенные коаксиальные трубки радиусами R1=2 см и R2=4 см несут заряды, равномерно распределенные по длине с линейными…

14.16. На отрезке тонкого прямого проводника длиной l=10 см равномерно распределен заряд с линейной плотностью τ=3 мкКл/м. Вычислить напряженность E, создаваемую…

14.17. Тонкий стержень длиной l=12 см заряжен с линейной плотностью τ=200 нКл/м. Найти напряженность Е электрического поля в точке, находящейся на расстоянии…

14.18. Тонкий стержень длиной l=10 см заряжен с линейной плотностью τ=400 нКл/м. Найти напряженность E электрического поля в точке, расположенной на перпендикуляре…

14.21. Электрическое поле создано двумя бесконечными параллельными пластинами, несущими одинаковый равномерно распределенный по площади заряд (σ=1 нКл/м2)…

14.22. Электрическое поле создано двумя бесконечными параллельными пластинами, несущими равномерно распределенный по площади заряд с поверхностными плотностями…

14.25. Две бесконечные параллельные пластины равномерно заряжены с поверхностной плотностью σ1=10 нКл/м2 и σ2=-30…

14.27. Эбонитовый сплошной шар радиусом R=5 см несет заряд, равномерно распределенный с объемной плотностью ρ= 10 нКл/м3. Определить напряженность…

14.28. Полый стеклянный шар несет равномерно распределенный по объему заряд. Его объемная плотность ρ=100 нКл/м3. Внутренний радиус R1…

14.29. Длинный парафиновый цилиндр радиусом R=2 см несет заряд, равномерно распределенный по объему с объемной плотностью ρ=10 нКл/м3. Определить…

14.30. Большая плоская пластина толщиной d=1 см несет заряд, равномерно распределенный по объему с объемной плотностью ρ=100 нКл/м3. Найти напряженность…

14.31. Лист стекла толщиной d=2 см равномерно заряжен с объемной плотностью ρ=1 мкКл/м3. Определить напряженность E и смещение D электрического…

14.32. На некотором расстоянии a=5 см от бесконечной проводящей плоскости находится точечный заряд Q=1 нКл. Определить силу F, действующую на заряд со стороны…

14.35. Большая металлическая пластина расположена в вертикальной плоскости и соединена с землей (рис. 14.13). На расстоянии a=10 см от пластины находится неподвижная…

14.36. Тонкая нить несет равномерно распределенный по длине заряд с линейной плотностью τ=2 мкКл/м. Вблизи средней части нити на расстоянии r=1 см, малом…

14.37. Большая металлическая пластина несет равномерно распределенный по поверхности заряд (σ=10 нКл/м2). На малом расстоянии от пластины находится…

14.38. Точечный заряд Q=1 мкКл находится вблизи большой равномерно заряженной пластины против ее середины. Вычислить поверхностную плотность σ заряда пластины,…

14.41. Две одинаковые круглые пластины площадью по S=100 см2 каждая расположены параллельно друг другу. Заряд Q1 одной пластины равен +100…

14.42. Плоский конденсатор состоит из двух пластин, разделенных стеклом. Какое давление p производят пластины на стекло перед пробоем, если напряженность E электрического…

14.43. Две параллельные, бесконечно длинные прямые нити несут заряд, равномерно распределенный по длине с линейными плотностями τ1=0,1 мкКл/м и…

14.44. Прямая, бесконечная, тонкая нить несет равномерно распределенный по длине заряд (τ1=1 мкКл/м). В плоскости, содержащей нить, перпендикулярно…

14.45. Металлический шар имеет заряд Q1=0,1 мкКл. На расстоянии, равном радиусу шара, от его поверхности находится конец нити, вытянутой вдоль силовой…

14.47. Бесконечная прямая нить несет равномерно распределенный заряд с линейной плотностью τ1=1 мкКл/м. Соосно с нитью расположено тонкое кольцо,…

14.48. Две бесконечно длинные равномерно заряженные тонкие нити (τ1=τ2=τ=1 мкКл/м) скрещены под прямым углом друг к другу. Определить…

14.50. Плоская квадратная пластина со стороной длиной a, равной 10 см, находится на некотором расстоянии от бесконечной равномерно заряженной (σ=1 мкКл/м2)…

14.51. В центре сферы радиусом R=20 см находится точечный заряд Q=10 нКл. Определить поток ФE вектора напряженности через часть сферической поверхности…

14.52. В вершине конуса с телесным углом ω=0,5 ср находится точечный заряд Q=30 нКл. Вычислить поток Ψ электрического смещения через площадку, ограниченную…

Источник: http://exir.ru/other/chertov/napryazhennost_elektricheskogo_polya.htm

Biz-books
Добавить комментарий