Как определить момент силы который необходимо приложить…

Статика. Условие неподвижности тела. Момент силы. Правило моментов

Как определить момент силы который необходимо приложить...

Если вы знакомились с предыдущими темами по динамике, то вы, наверное, заметили, что во всех задачах что-то куда-то двигалось: с некоторой скоростью, с некоторым ускорением, под действием некоторых сил.

А давайте теперь подумаем, в каком случае тело не будет двигаться. Пусть изначально тело имело скорость V=0V=0V=0.

Если на тело не действуют никакие силы, то F⃗=0\vec{F}=0F⃗=0. Если действует несколько сил, но они компенсируют друг друга — то векторная сумма всех сил тоже будет равна нулю. Тогда по 2-му закону Ньютона:

F⃗=0,F⃗=m⋅a⃗⇒a⃗=0\vec{F}=0,\,\,\vec{F}=m\cdot\vec{a}\,\,\,\Rightarrow\,\,\,\vec{a}=0F⃗=0,F⃗=m⋅a⃗⇒a⃗=0.

То есть у тела нет ускорения — а значит, оно не изменяет свою скорость. А начальная скорость (мы изначально с вами договорились) равна нулю. Значит, она такой нулевой и останется.

Поэтому вполне логично, что если сил нет или же они есть, но компенсируют друг друга, то тогда тело неподвижно. Математически это условие можно записать следующим образом:F⃗1+F⃗2+…+F⃗N=0\vec{F}_1+\vec{F}_2+…+\vec{F}_N=0F⃗1​+F⃗2​+…

+F⃗N​=0 или («продвинутый» вариант)∑i=1NF⃗i=0.\sum_{i=1}N \vec{F}_i=0{.}i=1∑N​F⃗i​=0.

Отлично! Вроде бы все логично. На самом деле логично, но не до конца.

Оказывается, условие равенства суммы всех сил нулю достаточно только для материальных точек: для тел, размерами которых можно пренебречь. Если тело «не маленькое», то для неподвижности тела должно выполняться еще одно условие. Это станет понятно из примера.

Возьмите ручку и положите ее на стол. Подействуйте на ручку указательными пальцами обеих рук так, как показано на рисунке:

Подействуйте одинаковыми силами. При этом ручка останется неподвижной. Все правильно: правая рука компенсирует действие левой.

А теперь сместите указательные пальцы так, как показано на рисунке ниже, и подействуйте такими же равными силами:

Что при этом произойдет? Правильно — ручка начнет поворачиваться:

Как так? К ручке приложены равные силы, но при этом она начинает двигаться?

Все дело в том, что в представленном случае ручку уже нельзя считать материальной точкой (телом, размером и формой которого можно пренебречь). Уже имеет значение, в каком месте и как мы приложили силы, пусть даже они будут равны.

Вращаться ручка начинает оттого, что к ней оказывается приложен момент силы.

Момент силы — это величина, равная произведению силы на плечо силы: M=F⋅dM=F\cdot dM=F⋅d

Что такое сила, мы знаем. А что такое плечо силы?

Плечо силы — это длина перпендикуляра от оси вращения тела до прямой, содержащей вектор силы.

Ну оооочень непонятное определение. Мы с вами согласны. Разобраться вам поможет следующий рисунок.

Для закрепления понятий момент силы и плечо силы решим задачку.

Отлично! С плечом силы и моментом силы мы разобрались. Стоп! А зачем вообще они нам нужны-то? Не разобрались ли мы случайно в совершенно не нужных нам вещах? Нет. Момент силы — нужная нам вещь.

Напомним, что мы говорили об условии неподвижности тела. Мы получили одно условие: векторная сумма всех сил должна быть равна нулю F⃗1+F⃗2+…+F⃗N=0.\vec{F}_1+\vec{F}_2+…+\vec{F}_N=0{.}F⃗1​+F⃗2​+…+F⃗N​=0. Условие логичное — равнодействующая всех сил равна нулю.

Но мы видели пример (толкание ручки двумя пальцами), когда равнодействующая равна нулю, но тем не менее тело двигается. Так происходит, когда моменты сил, вращающих тело против часовой стрелки , не компенсируют моменты сил, вращающих тело по часовой стрелке.

Правило моментов. Для того чтобы тело было неподвижно, нужно, чтобы моменты сил, вращающих тело против часовой стрелки, в точности компенсировали моменты сил, вращающих тело по часовой стрелке: (M1+M2+…

+MN)ПРОТИВ ЧАС. СТР.=(M_1+M_2+…+M_N)_{\text{ПРОТИВ ЧАС. СТР.}}=(M1​+M2​+…+MN​)ПРОТИВ ЧАС. СТР.​==(M1′+M2′+…+MN′)ПО ЧАС. СТР.=(M_1'+M_2'+…+M_N')_{\text{ПО ЧАС. СТР.}}=(M1′​+M2′​+…+MN′​)ПО ЧАС. СТР.

Вспомните пример с ручкой, которую мы толкали указательными пальцами обеих рук. Ручка вращалась из-за того, что моменты двух сил от наших пальцев вращали ее в одну и ту же сторону — против часовой стрелки. А «противостоять» этим моментам никакие другие силы не могли. Вот ручка и вращалась.

Проиллюстрировать это правило лучше всего на конкретном примере.

Условие

К левому концу невесомого стержня прикреплен груз массой 333 кг (см. рисунок). Стержень расположили на опоре, отстоящей от его левого конца на 0,20,20,2 длины стержня. Чему равна масса груза, который надо подвесить к правому концу стержня, чтобы он находился в равновесии?

(Источник: сайт reshuege.ru)

Решение

Итак, мы знаем, что стержень не будет вращаться в том случае, если моменты сил, вращающих его по часовой стрелке и против часовой стрелки, компенсируют друг друга. Значит, для начала нам нужно:

  • нарисовать силы, действующие на рычаг
  • найти и обозначить на рисунке плечи этих сил
  • определиться с тем, в какую сторону эти силы вращают стержень (по часовой или же против часовой стрелки).

Итого у нас три силы:

  • сила тяжести первого груза m1g⃗m_1\vec{g}m1​g⃗​; плечо этой силы d1=xd_1=xd1​=x (здесь xxx — длина маленького отрезка между темно-синими отметками на стержне)
  • сила тяжести второго груза m2g⃗m_2\vec{g}m2​g⃗​; плечо этой силы d2=4xd_2=4xd2​=4x
  • сила реакции треугольной опоры N⃗\vec{N}N⃗; плечо этой силы d=0d=0d=0, поскольку ось вращения (точка вращения) совпадает с точкой приложения силы, то есть лежит как раз на прямой, содержащей вектор силы N⃗\vec{N}N⃗; момент этой силы равен нулю.

Больше никаких сил к стержню не приложено. Сила тяжести самого стержня здесь отсутствует, поскольку в условии указано, что стержень «невесомый» — масса его равна нулю.

Из рисунка видно, что сила тяжести первого груза m1g⃗m_1\vec{g}m1​g⃗​ «пытается» повернуть стержень против часовой стрелки, а сила тяжести второго груза m2g⃗m_2\vec{g}m2​g⃗​ «пытается» повернуть стержень по часовой стрелке.

Момент силы реакции опоры никуда ничего не поворачивает, поскольку плечо силы реакции опоры равно нулю.

Поэтому для равновесия стержня момент силы тяжести m1g⃗m_1\vec{g}m1​g⃗​ должен быть равен моменту силы тяжести m2g⃗m_2\vec{g}m2​g⃗​:

m1g⋅d1=m2g⋅d2m_1g\cdot d_1=m_2g\cdot d_2m1​g⋅d1​=m2​g⋅d2​,

m1g⋅x=m2g⋅4xm_1g\cdot x=m_2g\cdot 4xm1​g⋅x=m2​g⋅4x,

m1g=4m2gm_1g=4m_2gm1​g=4m2​g,

m1=4m2m_1=4m_2m1​=4m2​,

m2=m14=3 кг4=0,75 кгm_2=\frac{m_1}{4}=\frac{3\text{ кг}}{4}=0,75\text{ кг}m2​=4m1​​=43 кг​=0,75 кг.

Ответ. 0,750,750,75 кг.

Замечание. Мы использовали при решении задачи только правило равенства моментов. А что нам дает первое условие — равенство нулю векторной суммы всех сил? Оно бывает полезно. Но используется не всегда. В нашем случае оно выглядит так:

m1g⃗+N⃗+m2g⃗=0m_1\vec{g}+\vec{N}+m_2\vec{g}=0m1​g⃗​+N⃗+m2​g⃗​=0.

Или в проекциях на вертикальную ось, направленную вверх:

−m1g+N−m2g=0-m_1g+N-m_2g=0−m1​g+N−m2​g=0,

N=m1g+m2gN=m_1g+m_2gN=m1​g+m2​g.

Вполне логичный результат: сила реакции опоры компенсирует две силы тяжести, приложенные к концам стержня. Это условие используется в случае «неудачно» выбранного положения оси вращения. Это не наш случай. В 90%90\%90% задач условие равенства нулю равнодействующей силы не понадобится.

Разберем еще одну задачу.

Условие

Под действием силы тяжести mgmgmg груза и силы FFF рычаг, представленный на рисунке, находится в равновесии.

Расстояния между точками приложения сил и точкой опоры, а также проекции этих расстояний на вертикальную и горизонтальную ось указаны на рисунке. Модуль силы FFF равен 600600600 Н. Найдите модуль силы тяжести, действующей на груз.

(Источник: сайт reshuege.ru)

Решение

Источник: https://lampa.io/p/%D1%81%D1%82%D0%B0%D1%82%D0%B8%D0%BA%D0%B0.-%D1%83%D1%81%D0%BB%D0%BE%D0%B2%D0%B8%D0%B5-%D0%BD%D0%B5%D0%BF%D0%BE%D0%B4%D0%B2%D0%B8%D0%B6%D0%BD%D0%BE%D1%81%D1%82%D0%B8-%D1%82%D0%B5%D0%BB%D0%B0.-%D0%BC%D0%BE%D0%BC%D0%B5%D0%BD%D1%82-%D1%81%D0%B8%D0%BB%D1%8B.-%D0%BF%D1%80%D0%B0%D0%B2%D0%B8%D0%BB%D0%BE-%D0%BC%D0%BE%D0%BC%D0%B5%D0%BD%D1%82%D0%BE%D0%B2-000000004d422f658548696303a04d5d

Момент силы. урок. Физика 7 Класс

Как определить момент силы который необходимо приложить...

Представьте, что вы футболист и перед вами футбольный мяч. Чтобы он полетел, его нужно ударить. Всё просто: чем сильнее ударите, тем быстрее и дальше полетит, и бить будете, скорее всего, в центр мяча (см. рис. 1).

Рис. 1. Прямая траектория полета мяча (Источник)

А чтобы мяч в полете вращался и летел по искривленной траектории, вы ударите не в центр мяча, а сбоку, что и делают футболисты, чтобы обмануть соперника (см. рис. 2).

Рис. 2. Кривая траектория полета мяча

Здесь уже важно, в какую точку бить.

Еще один простой вопрос: в каком месте нужно взять палку, чтобы она при подъеме не перевернулась? Если палка равномерная по толщине и плотности, то возьмем мы её посередине. А если она с одного края массивнее? Тогда мы возьмем её ближе к массивному краю, иначе он перевесит (см. рис. 3).

Рис. 3. Точка подъема

Представьте: папа сел на качели-балансир (см. рис. 4).

Рис. 4. Качели-балансир

Чтобы его перевесить, вы сядете на качели поближе к противоположному концу.

Во всех приведённых примерах нам важно было не просто подействовать на тело с некоторой силой, но и важно, в каком месте, на какую именно точку тела действовать. Эту точку мы выбирали наугад, пользуясь жизненным опытом. А если на палке будет три разных груза? А если поднимать ее вдвоем? А если речь идёт о подъемном кране или вантовом мосте (см. рис. 5)?

Рис. 5. Примеры из жизни

Для решения таких задач интуиции и опыта недостаточно. Без четкой теории их решить уже нельзя. О решении таких задач сегодня и пойдёт речь.

Обычно в задачах у нас есть тело, к которому приложены силы, и мы их решаем, как всегда до этого, не задумываясь над точкой приложения силы. Достаточно знать, что сила приложена просто к телу. Такие задачи встречаются часто, мы умеем их решать, но бывает, что недостаточно приложить силу просто к телу, – становится важно, в какую точку.

Пример задачи, в которой размеры тела не важны

Например, на столе лежит маленький железный шарик, на который действует сила тяжести 1 Н. Какую силу нужно приложить, чтобы его поднять? Шарик притягивается Землей, мы будем действовать на него вверх, прикладывая некоторую силу.

Силы, действующие на шарик, направлены в противоположные стороны, и, чтобы поднять шарик, нужно подействовать на него с силой, большей по модулю, чем сила тяжести (см. рис. 6).

Рис. 6. Силы, действующие на шарик

Сила тяжести равна , значит, на шарик нужно подействовать вверх с силой:

Мы не задумывались, как именно мы берем шарик, мы его просто берем и поднимаем. Когда мы показываем, как мы поднимали шарик, мы вполне можем нарисовать точку и показать: мы воздействовали на шарик (см. рис. 7).

Рис. 7. Действие на шарик

Когда мы можем так поступить с телом, показать его на рисунке при объяснении в виде точки и не обращать внимания на его размеры и форму, мы считаем его материальной точкой. Это модель.

Реально же шарик имеет форму и размеры, но мы на них в этой задаче не обращали внимания. Если тот же шарик нужно заставить вращаться, то просто сказать, что мы воздействуем на шарик, уже нельзя.

Здесь важно, что мы толкали шарик с краю, а не в центр, заставляя его вращаться. В этой задаче тот же шарик уже нельзя считать точкой.

Мы уже знаем примеры задач, в которых нужно учитывать точку приложения силы: задача с футбольным мячом, с неоднородной палкой, с качелями.

Точка приложения силы важна также в случае с рычагом. Пользуясь лопатой, мы действуем на конец черенка. Тогда достаточно приложить небольшую силу (см. рис. 8).

Рис. 8. Действие малой силы на черенок лопаты

Что общего между рассмотренными примерами, где нам важно учитывать размеры тела? И мяч, и палка, и качели, и лопата – во всех этих случаях речь шла о вращении этих тел вокруг некоторой оси. Мяч вращался вокруг своей оси, качели поворачивались вокруг крепления, палка – вокруг места, в котором мы ее держали, лопата – вокруг точки опоры (см. рис. 9).

Рис. 9. Примеры вращающихся тел

Рассмотрим поворот тел вокруг неподвижной оси и увидим, что заставляет тело поворачиваться. Будем рассматривать вращение в одной плоскости, тогда можно считать, что тело поворачивается вокруг одной точки О (см. рис. 10).

Рис. 10. Точка вращения

Если мы захотим уравновесить качели, у которых балка будет стеклянной и тонкой, то она может просто сломаться, а если балка из мягкого металла и тоже тонкая – то согнуться (см. рис. 11).

Рис. 11. Стеклянная балка (слева) и балка из мягкого металла (справа)

Такие случаи мы рассматривать не будем; будем рассматривать поворот прочных жестких тел.

Неправильно будет сказать, что вращательное движение определяется только силой. Ведь на качелях одна и та же сила может вызвать их вращение, а может и не вызвать, смотря где мы сядем.

Дело не только в силе, но и в расположении точки, на которую воздействуем. Все знают, насколько трудно поднять и удержать груз на вытянутой руке.

Чтобы определять точку приложения силы, вводится понятие плеча силы (по аналогии с плечом руки, которой поднимают груз).

Плечо силы – это минимальное расстояние от заданной точки до прямой, вдоль которой действует сила.

Из геометрии вы наверняка уже знаете, что это перпендикуляр, опущенный из точки О на прямую, вдоль которой действует сила (см. рис. 12).

Рис. 12. Графическое изображение плеча силы

Почему плечо силы – минимальное расстояние от точки О до прямой, вдоль которой действует сила

Может показаться странным, что плечо силы измеряется от точки О не до точки приложения силы, а до прямой, вдоль которой эта сила действует.

Проделаем такой опыт: привяжем к рычагу нить. Подействуем на рычаг с некоторой силой в точке, где привязана нить (см. рис. 13).

Рис. 13. Нить привязана к рычагу

Если создастся момент силы, достаточный для поворота рычага, он повернется. Нить покажет прямую, вдоль которой направлена сила (см. рис. 14).

Рис. 14. Направление силы

Попробуем потащить рычаг с той же силой, но теперь взявшись за нить. В воздействии на рычаг ничего не изменится, хотя точка приложения силы поменяется. Но сила будет действовать вдоль той же прямой, ее расстояние до оси вращения, то есть плечо силы, останется тем же. Попробуем подействовать на рычаг под углом (см. рис. 15).

Рис. 15. Действие на рычаг под углом

Теперь сила приложена к той же точке, но действует вдоль другой прямой. Ее расстояние до оси вращения стало малό, момент силы уменьшился, и рычаг может уже не повернуться.

На тело оказывается воздействие, направленное на вращение, на поворот тела. Это воздействие зависит от силы и от её плеча. Величина, характеризующая вращательное воздействие силы на тело, называется момент силы, иногда его называют еще вращающим или крутящим моментом.

Значение слова «момент»

Нам привычно употреблять слово «момент» в значении очень короткого промежутка времени, как синоним слова «мгновение» или «миг». Тогда не совсем понятно, какое отношение имеет момент к силе. Обратимся к происхождению слова «момент».

Слово происходит от латинского momentum, что означает «движущая сила, толчок». Латинский глагол movēre означает «двигать» (как и английское слово move, а movement означает «движение»). Теперь нам ясно, что вращающий момент – это то, что заставляет тело вращаться.

Момент силы – это произведение силы на ее плечо.

Единица измерения – ньютон, умноженный на метр: .

Если увеличивать плечо силы, можно уменьшить силу и момент силы останется прежним. Мы очень часто используем это в повседневной жизни: когда открываем дверь, когда пользуемся плоскогубцами или гаечным ключом.

Остался последний пункт нашей модели – надо разобраться, что делать, если на тело действует несколько сил. Мы можем вычислить момент каждой силы. Понятно, что если силы будут вращать тело в одном направлении, то их действие сложится (см. рис. 16).

Рис. 16. Действие сил складывается

Если в разных направлениях – моменты сил будут уравновешивать друг друга и логично, что их нужно будет вычесть. Поэтому моменты сил, которые вращают тело в разных направлениях, будем записывать с разными знаками. Например, запишем, если сила предположительно вращает тело вокруг оси по часовой стрелке, и  – если против (см. рис. 17).

Рис. 17. Определение знаков

Тогда мы можем записать одну важную вещь: чтобы тело пребывало в равновесии, сумма моментов действующих на него сил должна быть равна нулю.

Формула для рычага

Мы уже знаем принцип действия рычага: на рычаг действуют две силы, и во сколько раз больше плечо рычага, во столько раз меньше сила:

Рассмотрим моменты сил, которые действуют на рычаг.

Выберем положительное направление вращения рычага, например против часовой стрелки (см. рис. 18).

Рис. 18. Выбор направления вращения

Тогда момент силы  будет со знаком плюс, а момент силы  – со знаком минус. Чтобы рычаг был в равновесии, сумма моментов сил должна быть равна нулю. Запишем:

Математически это равенство и соотношение, записанное выше для рычага, – одно и то же, и то, что мы получили экспериментально, подтвердилось.

Например, определим, будет ли пребывать в равновесии рычаг, изображенный на рисунке. На него действуют три силы (см. рис. 19). ,  и . Плечи сил равны ,  и .

Рис. 19. Рисунок к условию задачи 1

Чтобы рычаг пребывал в равновесии, сумма моментов сил, которые на него действуют, должен быть равен нулю.

На рычаг по условию действуют три силы: ,  и . Их плечи соответственно равны ,  и .

Направление вращения рычага по часовой стрелке будем считать положительным. В этом направлении рычаг вращает сила , ее момент равен:

Силы  и  вращают рычаг против часовой стрелки, их моменты запишем со знаком минус:

Осталось вычислить сумму моментов сил:

Суммарный момент не равен нулю, значит, тело не будет пребывать в равновесии. Суммарный момент положительный, значит, рычаг будет поворачиваться по часовой стрелке (в нашей задаче это положительное направление).

Что произойдет с рычагом дальше?

Мы решили задачу и получили результат: суммарный момент сил, действующих на рычаг, равен . Рычаг начнет поворачиваться. И при его повороте, если силы не изменят направление, будут изменяться плечи сил. Они будут уменьшаться, пока не станут равны нулю, когда рычаг повернется вертикально (см. рис. 20).

Рис. 20. Плечи сил равны нулю

А при дальнейшем повороте силы станут направлены так, чтобы вращать его в противоположном направлении. Поэтому, решив задачу, мы определили, в какую сторону начнет вращаться рычаг, не говоря о том, что будет происходить потом.

Теперь вы научились определять не только силу, с которой нужно действовать на тело, чтобы изменить его скорость, но и точку приложения этой силы, чтобы оно не поворачивалось (или поворачивалось, как нам нужно).

Как толкать шкаф, чтобы он не перевернулся?

Мы знаем, что, когда мы толкаем шкаф с силой  в верхней его части, он переворачивается, а чтобы этого не произошло, мы толкаем его ниже. Теперь мы можем объяснить это явление. Ось его вращения находится на том его ребре, на котором он стоит, при этом плечи всех сил, кроме силы , либо малы, либо равняются нулю, поэтому под действием силы  шкаф падает (см. рис. 21).

Рис. 21. Действие на верхнюю часть шкафа

Прикладывая силу ниже, мы уменьшаем ее плечо , а значит, и момент этой силы, и опрокидывания не происходит (см. рис. 22).

Рис. 22. Сила приложена ниже

Шкаф как тело, размеры которого мы учитываем, подчиняется тому же закону, что и гаечный ключ, дверная ручка, мосты на опорах и т. п.

На этом наш урок окончен. Спасибо за внимание!

Список литературы

  1. Соколович Ю.А., Богданова Г.С Физика: Справочник с примерами решения задач. – 2-е издание передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.
  2. Перышкин А.В. Физика. 7 кл.: учеб. для общеобразоват. учреждений — 10-е изд., доп. – М.: Дрофа, 2006. – 192 с.: ил.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Abitura.com (Источник).
  2. Solverbook.com (Источник).

Домашнее задание

  1. Дайте определение плеча силы, момента сил.
  2. Чему равна размерность момента сил?
  3. Подвешенный однородный стержень с двумя грузами на концах находится в равновесии. Как нужно изменить плечо , чтобы стержень остался в равновесии, если массу первого груза увеличили в 2 раза?

Источник: https://interneturok.ru/lesson/physics/7-klass/rabota-moshnost-energija/moment-sily

Определение и свойства момента силы

Как определить момент силы который необходимо приложить...

Определения момента силы относительно точки и оси. Определение плеча силы относительно точки. Формулировки и доказательства свойств момента силы. Выражение абсолютного значения момента в виде произведения плеча силы на модуль силы.

Момент силы относительно точки O – это векторное произведение вектора , проведенного из точки O в точку приложения силы A, на вектор силы :
(1)   .

Если выбрать прямоугольную систему координат Oxyz с центром в точке O, то момент силы будет иметь следующие компоненты:
(1.1)   ;
(1.2)   ;
(1.3)   .
Здесь – координаты точки A в выбранной системе координат:
.
Компоненты представляют собой значения момента силы относительно осей , соответственно.

Определение плеча силы

Плечо силы относительно точки – это расстояние между линией действия силы и точкой, относительно которой определяется плечо. То есть плечо силы – это длина перпендикуляра, опущенного из точки на линию действия силы.

Свойства

Если точку приложения силы переместить вдоль линии ее действия, то момент, при таком перемещении, не изменится.
Доказательство ⇓

Абсолютная величина момента силы относительно некоторой точки равна произведению абсолютного значения силы на плечо этой силы относительно выбранной точки.
Доказательство ⇓

Момент относительно точки O, от силы, линия действия которой проходит через эту точку, равен нулю.
Доказательство ⇓

Момент от векторной суммы сил, приложенных к одной точке тела, равен векторной сумме моментов от каждой из сил, приложенных к этой же точке:
.
Доказательство ⇓

Тоже самое относится и к силам, чьи линии продолжения пересекаются в одной точке. При этом в качестве точки приложения суммы сил берется точка пересечения линий их действия.

Если векторная сумма сил равна нулю:
, то сумма моментов от этих сил не зависит от положения центра, относительно которого вычисляются моменты:

.

Доказательство ⇓

Момент силы является псевдовектором или, что то же самое, аксиальным вектором.

Это свойство следует из свойства векторного произведения. Поскольку векторы и являются истинными (или полярными) векторами, то их векторное произведение является псевдовектором. Это означает то, что мы можем определить только абсолютное значение и ось, вдоль которой направлено векторное произведение.

Само же направление по этой оси мы задаем произвольным образом, используя правило правого винта. То есть мы мысленно откладываем векторы и из одного центра. Затем поворачиваем ручку из положения в положение . В результате правый винт смещается в направлении, перпендикулярном плоскости, в которой расположены векторы.

Это направление мы и берем за направление векторного произведения.

Но если бы мы определили направление по правилу левого винта, то векторное произведение было бы направлено в противоположную сторону. При этом никакого противоречия не возникает.

То есть фактически, аксиальные векторы могут иметь два взаимно противоположных направления. Чтобы не усложнять математические формулы, мы выбираем одно из них, применяя правило правого винта.

По этой причине, псевдовекторы нельзя геометрически складывать с истинными векторами. Но их можно перемножать, используя скалярное или векторное произведение.

Определение

Часто встречаются случаи, когда нам не нужно знать все компоненты момента силы относительно выбранной точки, а нужно знать только момент силы относительно выбранной оси.

Момент силы относительно оси – это проекция вектора момента силы относительно произвольной точки, принадлежащей этой оси, на направление оси.

Пусть – единичный вектор, направленный вдоль оси. И пусть O – произвольная точка, принадлежащая ей. Тогда момент силы относительно оси является скалярным произведением:
.
Такое определение возможно, поскольку для любых двух точек O и O′, принадлежащих оси, проекции моментов относительно этих точек на ось равны. Покажем это.

Воспользуемся векторным уравнением :

;
.
Умножим это уравнение скалярно на единичный вектор , направленный вдоль оси:
.
Поскольку вектор параллелен оси, то . Отсюда
.
То есть проекции моментов на ось, относительно точек O и O′, принадлежащих этой оси, равны.

Перемещение точки приложения силы вдоль линии ее действия

Все свойства ⇑ Если точку приложения силы переместить вдоль линии действия силы, то момент, при таком перемещении, не изменится.

Доказательство

Пусть сила приложена в точке A. Через точку A проведем прямую, параллельную вектору силы. Эта прямая является линией ее действия. Переместим точку A приложения силы в точку A′, принадлежащую линии действия. Тогда
.

Вектор проведен через две точки линии действия. Поэтому его направление совпадает или противоположно направлению вектора силы . Тогда , где λ – параметр; .   , если точка A′ смещена относительно A в направлении вектора .

В противном случае .

Таким образом, вектор, проведенный из O в A′, имеет вид:
.
Найдем момент силы, приложенной в точке A′, применяя свойства векторного произведения:

. Мы видим, что момент не изменился:

.

Свойство доказано.

Абсолютная величина момента силы

Все свойства ⇑ Абсолютная величина момента силы относительно некоторой точки равна произведению абсолютного значения силы на плечо этой силы относительно выбранной точки.

Доказательство

Абсолютное значение момента M относительно точки O равно произведению силы F на ее плечо d = |OD|.

Пусть мы имеем силу , приложенную в точке A. Рассмотрим момент этой силы относительно некоторой точки O. Заметим, что точки O, A и вектор лежат в одной плоскости. Изобразим ее на рисунке. Через точку A, в направлении вектора проводим прямую AB.

Эта прямая называется линией действия силы . Через точку O опустим перпендикуляр OD к линии действия. И пусть D является точкой пересечения линии действия и перпендикуляра. Тогда – плечо силы относительно центра O. Обозначим его буквой .

Воспользуемся предыдущим свойством ⇑, согласно которому точку приложения силы можно перемещать вдоль ее линии действия. Переместим ее в точку D. Момент силы:
.

Поскольку векторы и перпендикулярны, то по свойству векторного произведения, абсолютное значение момента:
,
где – абсолютное значение силы.

Заметим, что вектор момента перпендикулярен плоскости рисунка. Его направление определяется по правилу правого винта. Если мы будем вращать винт, проходящий через точку O перпендикулярно плоскости рисунка, в направлении силы F, то он будет перемещаться на нас. Поэтому вектор момента перпендикулярен плоскости рисунка и направлен на нас.

Свойство доказано.

Момент относительно точки от силы, проходящей через эту точку

Все свойства ⇑ Момент относительно точки O, от силы, линия действия которой проходит через эту точку, равен нулю.

Доказательство

Пусть линия действия силы проходит через точку O. Тогда плечо этой силы относительно O равно нулю: . Согласно предыдущему свойству ⇑, абсолютное значение момента силы относительно выбранной точки равно нулю:
.

Свойство доказано.

Момент суммы сил, приложенных в одной точке

Все свойства ⇑ Момент от векторной суммы сил, приложенных к одной точке тела, равен векторной сумме моментов от каждой из сил, приложенных к этой же точке:
.

Доказательство

Пусть силы приложены в одной точке A. Пусть – векторная сумма этих сил. Находим момент относительно некоторой точки O от векторной суммы , приложенной в точке A. Для этого применяем свойства векторного произведения:

.

Свойство доказано.

Момент системы сил, векторная сумма которых равна нулю

Все свойства ⇑ Если векторная сумма сил равна нулю:
, то сумма моментов от этих сил не зависит от положения центра, относительно которого вычисляются моменты:

.

Доказательство

Пусть силы приложены в точках , соответственно. И пусть точки O и C обозначают два центра, относительно которых мы будем вычислять моменты. Тогда имеют место следующие векторные уравнения:
.
Используем их при вычислении суммы моментов относительно точки O:

. Здесь мы воспользовались тем, что по условию,

.

Свойство доказано.

Момент относительно оси от силы, проходящей через эту ось

Все свойства ⇑ Момент относительно оси от силы, линия действия которой проходит через эту ось, равен нулю.

Доказательство

В определении ⇑ указано, что момент силы относительно оси – это проекция вектора момента силы относительно произвольной точки, принадлежащей этой оси, на направление оси. В качестве такой точки возьмем точку пересечения линии действия силы с осью. Но, согласно доказанному выше ⇑, момент относительно этой точки равен нулю. Поэтому равна нулю и его проекция на эту ось.

Свойство доказано.

Момент относительно оси от силы, параллельной этой оси

Все свойства ⇑ Момент относительно оси от силы, параллельной этой оси равен нулю.

Доказательство

Пусть O – произвольная точка на оси. Рассмотрим момент силы относительно этой точки. Согласно определению:
.
Согласно свойству векторного произведения, вектор момента перпендикулярен вектору силы . Поскольку вектор силы параллелен оси, то вектор момента ей перпендикулярен. Поэтому проекция момента относительно точки O на ось равна нулю.

Свойство доказано.

Олег Одинцов.     : 20-09-2019

Источник: https://1cov-edu.ru/mehanika/statika/moment-sily-opredelenie-i-svojstva/

Как определить момент сил трения?

Как определить момент силы который необходимо приложить...

Когда решают любые задачи по физике, в которых имеются движущиеся объекты, то всегда говорят о силах трения. Их либо учитывают, либо ими пренебрегают, но факт их присутствия ни у кого не вызывает сомнения. В данной статье рассмотрим, что такое момент сил трения, а также приведем проблемы, для устранения которых воспользуемся полученными знаниями.

Сила трения и ее природа

Каждый понимает, что если одно тело движется по поверхности другого совершенно любым способом (скользит, катится), то всегда существует некоторая сила, которая препятствует этому перемещению. Она называется динамической силой трения.

Причина ее возникновения связана с тем фактом, что любые тела имеют микроскопические шероховатости на своих поверхностях. Когда соприкасаются два объекта, то их шероховатости начинают взаимодействовать друг с другом.

Это взаимодействие носит как механический характер (пик попадает во впадину), так и происходит на уровне атомов (дипольные притяжения, ван-дер-ваальсовые и другие).

Когда соприкасаемые тела находятся в покое, то, чтобы привести их в движение относительно друг друга, необходимо приложить усилие, которое больше такового для поддержания скольжения этих тел друг по другу с постоянной скоростью. Поэтому помимо динамической также рассматривают статическую силу трения.

В школьном курсе физики говорится, что впервые законы трения изложил французский физик Гийом Амонтон в XVII веке. На самом деле это явление стал изучать еще в конце XV века Леонардо да Винчи, рассматривая движущийся предмет по гладкой поверхности.

Свойства трения могут быть кратко изложены следующим образом:

  • сила трения всегда действует против направления перемещения тела;
  • ее величина прямо пропорциональна реакции опоры;
  • она не зависит от площади контакта;
  • она не зависит от скорости перемещения (для небольших скоростей).

Эти особенности рассматриваемого явления позволяют ввести следующую математическую формулу для силы трения:

F = μ*N, где N — реакция опоры, μ — коэффициент пропорциональности.

Значение коэффициента μ зависит исключительно от свойств поверхностей, которые трутся друг о друга. Таблица значений для некоторых поверхностей приведена ниже.

Для трения покоя формула используется та же самая, что приведена выше, однако значения коэффициентов μ для тех же поверхностей будут совершенно иные (они больше по величине, чем для скольжения).

Особый случай представляет трение качения, когда одно тело катится (не скользит) по поверхности другого. Для силы в этом случае применяют формулу:

F = f*N/R.

Здесь R — радиус колеса, f- коэффициент качения, который согласно формуле имеет размерность длины, что его отличает от безразмерного μ.

Момент силы

Перед тем как отвечать на вопрос, как определить момент сил трения, необходимо рассмотреть само физическое понятие. Под моментом силы M понимают физическую величину, которая определяется как произведение плеча на значение силы F, приложенной к нему. Ниже приведен рисунок.

Здесь мы видим, что приложение F к плечу d, которое равно длине гаечного ключа, создает крутящий момент, приводящий к откручиванию зеленой гайки.

Таким образом, для момента силы справедлива формула:

M = d*F.

Заметим, что природа силы F не имеет никакого значения: она может быть электрической, гравитационной или вызванной трением. То есть определение момента силы трения будет тем же самым, что приведено в начале пункта, и записанная формула для M остается справедливой.

Когда появляется момент сил, вызванный трением?

Эта ситуация возникает, когда выполняются три главных условия:

  • Во-первых, должна иметь место вращающаяся система вокруг некоторой оси. Например, это может быть колесо, движущееся по асфальту, или крутящаяся на оси горизонтально расположенная музыкальная пластинка патефона.
  • Во-вторых, должно существовать трение между вращающейся системой и некоторой средой. В примерах выше: на колесо действует трение качения при его взаимодействии с поверхностью асфальта; если положить музыкальную пластинку на стол и раскрутить ее, то она будет испытывать трение скольжения о поверхность стола.
  • В-третьих, возникающая сила трения должна действовать не на ось вращения, а на крутящиеся элементы системы. Если сила имеет центральный характер, то есть действует на ось, то плечо равно нулю, поэтому она не будет создавать момента.

Как найти момент силы трения?

Чтобы решить эту задачу, необходимо сначала определить, на какие вращающиеся элементы действует сила трения.

Затем следует найти расстояние от этих элементов до оси вращения и определить, чему равна сила трения, действующая на каждый элемент.

После этого необходимо выполнить умножение расстояний ri на соответствующие величины Fi и сложить полученные результаты. В итоге суммарный момент сил трения вращения вычисляется по формуле:

M = ∑nri*Fi.

Здесь n — количество сил трения, возникающих в системе вращения.

Любопытно отметить, что хотя M — это величина векторная, поэтому при сложении моментов в скалярной форме следует учитывать ее направление. Трение всегда действует против направления вращения, поэтому каждый момент Mi=ri*Fi будет иметь один и тот же знак.

Далее решим две задачи, где используем рассмотренные формулы.

Вращение диска болгарки

Известно, что когда диск болгарки радиусом 5 см режет металл, то он вращается с постоянной скоростью. Необходимо определить, какой момент сил создает электромотор прибора, если сила трения о металл диска равна 0,5 кН.

Поскольку диск вращается с постоянной скоростью, то сумма всех моментов сил, которые на него действуют, равна нулю. В данном случае мы имеем всего 2 момента: от электромотора и от силы трения. Поскольку они действуют в разных направлениях, то можно записать формулу:

M1 — M2 = 0 => M1 = M2.

Поскольку трение действует только в точке соприкосновения диска болгарки с металлом, то есть на расстоянии r от оси вращения, то ее момент силы равен:

M2 = r*F=5*10-2*500 = 25 Н*м.

Поскольку электромотор создает такой же по модулю момент, получаем ответ: 25 Н*м.

Качение деревянного диска

Имеется диск из дерева, его радиус r равен 0,5 метра. Этот диск начинают катить по деревянной поверхности. Необходимо рассчитать, какое расстояние способен он преодолеть, если начальная скорость вращения его ω составляла 5 рад/с.

Кинетическая энергия вращающегося тела равна:

E = I*ω2/2.

Здесь I — момент инерции. Сила трения качения будет приводить к замедлению движения диска. Работу, совершаемую ей, можно вычислить по следующей формуле:

A = M*θ.

Здесь θ — угол в радианах, на который сможет повернуться диск в процессе своего движения. Тело будет катиться до тех пор, пока вся его кинетическая энергия не расходуется на работу трения, то есть можно приравнять выписанные формулы:

I*ω2/2 = M*θ.

Момент инерции диска I равен m*r2/2. Чтобы вычислить момент M силы трения F, следует заметить, что она действует вдоль края диска в точке его соприкосновения с деревянной поверхностью, то есть M = r*F. В свою очередь F = f*mg/r (сила реакции опоры N равна весу диска mg). Подставляя все эти формулы в последнее равенство, получим:

m*r2*ω2/4 = r*f*mg/r*θ => θ=r2*ω2/(4*f*g).

Поскольку пройденное диском расстояние L связано с углом θ выражением L=r*θ, то получаем конечное равенство:

L=r3*ω2/(4*f*g).

Значение f можно посмотреть в таблице для коэффициентов трения качения. Для пары дерево-дерево он равен 1,5*10-3 м. Подставляем все величины, получаем:

L=0,53*52/(4*1,5*10-3*9,81) ≈ 53,1 м.

Для подтверждения правильности полученной конечной формулы можно проверить, что получаются единицы измерения длины.

Источник: https://FB.ru/article/428724/kak-opredelit-moment-sil-treniya

Biz-books
Добавить комментарий