Как определить магнитную индукцию в точке…

§ 37. Индукция магнитного поля

Как определить магнитную индукцию в точке...

Многие из вас наверняка замечали, что одни магниты создают в пространстве более сильные поля, чем другие. Например, поле первого магнита, изображённого на рисунке 111, сильнее, чем второго.

Действительно, при одном и том же расстоянии до гвоздей, рассыпанных на столе, сила притяжения к первому магниту оказалась достаточной для преодоления силы тяжести гвоздей, а сила притяжения ко второму — нет.

Рис. 111. Магнитное поле первого магнита сильнее, чем второго

Какой же величиной можно охарактеризовать магнитное поле?

  • Магнитное поле характеризуется векторной физической величиной, которая обозначается символом В и называется индукцией магнитного поля (или магнитной индукцией)

Поясним, что это за величина.

Напомним, что магнитное поле может действовать с определённой силой на помещённый в него проводник с током.

Поместим прямолинейный участок проводника АВ с током в магнитное поле перпендикулярно его магнитным линиям (рис. 112).

При показанном на рисунке направлении силы тока I в проводнике и расположении полюсов магнита действующая на проводник сила F, согласно правилу левой руки, будет направлена вниз.

Определить эту силу можно, вычислив вес гирьки, которую приходится добавлять на правую чашу весов для уравновешивания силы F.

Рис. 112. Опыт по измерению силы, действующей на помещённый в магнитное поле проводник с током

Опыты показывают, что модуль этой силы зависит от самого магнитного поля — более мощный магнит действует на данный проводник с большей силой. Кроме того, сила действия магнитного поля на проводник пропорциональна длине L этого проводника и силе тока I в нём.

Отношение же модуля силы F к длине проводника L и силе тока I (т. е. F/IL) есть величина постоянная. Она не зависит ни от длины проводника, ни от силы тока в нём. Отношение F/IL зависит только от поля и может служить его количественной характеристикой.

Эта величина и принимается за модуль вектора магнитной индукции:

B = F/IL

  • Модуль вектора магнитной индукции В равен отношению модуля силы F, с которой магнитное поле действует на расположенный перпендикулярно магнитным линиям проводник с током, к силе тока I в проводнике и его длине L

По этой формуле можно определить индукцию однородного магнитного поля.

В СИ единица магнитной индукции называется тесла (Тл) в честь югославского электротехника Николы Тесла.

Установим взаимосвязь между единицей магнитной индукции и единицами других величин СИ:

До сих пор для графического изображения магнитных полей мы пользовались линиями, которые условно называли магнитными линиями или линиями магнитного поля.

Более точное название магнитных линий — линии магнитной индукции (или линии индукции магнитного поля).

  • Линиями магнитной индукции называются линии, касательные к которым в каждой точке поля совпадают с направлением вектора магнитной индукции

Данное определение линий магнитной индукции можно пояснить с помощью рисунка 113. На нём изображён проводник с током, расположенный перпендикулярно плоскости чертежа.

Окружность вокруг проводника представляет собой одну из линий индукции магнитного поля, созданного протекающим по проводнику током.

Проведённые к этой окружности касательные в любой точке совпадают с вектором магнитной индукции.

Рис. 113. Вектор магнитной индукции прямого проводника с током направлен по касательной в каждой точке поля

Теперь, пользуясь термином «магнитная индукция», назовём основные признаки однородного и неоднородного магнитных полей.

В однородном магнитном поле (рис. 114) вектор магнитной индукции В во всех произвольно выбранных точках поля одинаков как по модулю, так и по направлению.

Рис. 114. Во всех точках однородного магнитного поля вектор магнитной индукции В одинаков по модулю и по направлению

Сравним это поле с двумя неоднородными полями: полем постоянного полосового магнита (рис. 115, а) и полем тока, протекающего по прямолинейному участку проводника (рис. 115, б).

Рис. 115. В разных точках неоднородного магнитного поля вектор магнитной индукции может быть различным как по модулю, так и по направлению

Легко заметить, что в неоднородных полях, в отличие от однородного, вектор магнитной индукции меняется от точки к точке.

Например, в каждом из рассматриваемых неоднородных полей при переходе из точки 1 в точку 2 вектор магнитной индукции меняется по модулю, при переходе из точки 1 в точку 3 — по направлению, при переходе из точки 2 в точку 3 вектор магнитной индукции меняется как по модулю, так и по направлению.

Магнитное поле называется однородным, если во всех его точках магнитная индукция B одинакова. В противном случае поле называется неоднородным.

Чем больше магнитная индукция в данной точке поля, тем с большей силой будет действовать поле в этой точке на магнитную стрелку или движущийся электрический заряд.

Вопросы

  1. Как называется векторная величина, которая служит количественной характеристикой магнитного поля?
  2. По какой формуле определяется модуль вектора магнитной индукции однородного магнитного поля?
  3. Что называется линиями магнитной индукции?
  4. В каком случае магнитное поле называется однородным, а в каком — неоднородным?
  5. Как зависит сила, действующая в данной точке магнитного поля на магнитную стрелку или движущийся заряд, от магнитной индукции в этой точке?

Упражнение 34

  1. В однородное магнитное поле перпендикулярно линиям магнитной индукции поместили прямолинейный проводник, по которому протекает ток. Сила тока в проводнике 4 А. Определите индукцию этого поля, если оно действует с силой 0,2 Н на каждые 10 см длины проводника.
  2. Проводник с током поместили в однородное магнитное поле перпендикулярно линиям магнитной индукции В. Через некоторое время силу тока в проводнике уменьшили в 2 раза. Изменилась ли при этом индукция В магнитного поля, в которое был помещён проводник? Сопровождалось ли уменьшение силы тока изменением какой-либо другой физической величины? Если да, то что это за величина и как она изменилась?

Источник: http://tepka.ru/fizika_9/37.html

Магнитное поле – FIZI4KA

Как определить магнитную индукцию в точке...

ЕГЭ 2018 по физике ›

Магнитное поле – особая форма материи, существующая вокруг движущихся электрических зарядов – токов.

Источниками магнитного поля являются постоянные магниты, проводники с током. Обнаружить магнитное поле можно по действию на магнитную стрелку, проводник с током и движущиеся заряженные частицы.

Для исследования магнитного поля используют замкнутый плоский контур с током (рамку с током).

Впервые поворот магнитной стрелки около проводника, по которому протекает ток, обнаружил в 1820 году Эрстед. Ампер наблюдал взаимодействие проводников, по которым протекал ток: если токи в проводниках текут в одном направлении, то проводники притягиваются, если токи в проводниках текут в противоположных направлениях, то они отталкиваются.

Свойства магнитного поля:

  • магнитное поле материально;
  • источник и индикатор поля – электрический ток;
  • магнитное поле является вихревым – его силовые линии (линии магнитной индукции) замкнутые;
  • величина поля убывает с расстоянием от источника поля.

Важно!
Магнитное поле не является потенциальным. Его работа на замкнутой траектории может быть не равна нулю.

Магнитным взаимодействием называют притяжение или отталкивание электрически нейтральных проводников при пропускании через них электрического тока.

Магнитное взаимодействие движущихся электрических зарядов объясняется так: всякий движущийся электрический заряд создает в пространстве магнитное поле, которое действует на движущиеся заряженные частицы.

Силовая характеристика магнитного поля – вектор магнитной индукции ​\( \vec{B} \)​. Модуль вектора магнитной индукции равен отношению максимального значения силы, действующей со стороны магнитного поля на проводник с током, к силе тока в проводнике ​\( I \)​ и его длине ​\( l \)​:

Обозначение – \( \vec{B} \), единица измерения в СИ – тесла (Тл).

1 Тл – это индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила 1 Н.

Направление вектора магнитной индукции совпадает с направлением от южного полюса к северному полюсу магнитной стрелки (направление, которое указывает северный полюс магнитной стрелки), свободно установившейся в магнитном поле.

Направление вектора магнитной индукции можно определить по правилу буравчика:

если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.

Для определения магнитной индукции нескольких полей используется принцип суперпозиции:

магнитная индукция результирующего поля, созданного несколькими источниками, равна векторной сумме магнитных индукций полей, создаваемых каждым источником в отдельности:

Поле, в каждой точке которого вектор магнитной индукции одинаков по величине и направлению, называется однородным.

Наглядно магнитное поле изображают в виде магнитных линий или линий магнитной индукции. Линия магнитной индукции – это воображаемая линия, в любой точке которой вектор магнитной индукции направлен по касательной к ней.

Свойства магнитных линий:

  • магнитные линии непрерывны;
  • магнитные линии замкнуты (т.е. в природе не существует магнитных зарядов, аналогичных электрическим зарядам);
  • магнитные линии имеют направление, связанное с направлением тока.

Густота расположения позволяет судить о величине поля: чем гуще расположены линии, тем сильнее поле.

На плоский замкнутый контур с током, помещенный в однородное магнитное поле, действует момент сил ​\( M \)​:

где ​\( I \)​ – сила тока в проводнике, ​\( S \)​ – площадь поверхности, охватываемая контуром, ​\( B \)​ – модуль вектора магнитной индукции, ​\( \alpha \)​ – угол между перпендикуляром к плоскости контура и вектором магнитной индукции.

Тогда для модуля вектора магнитной индукции можно записать формулу:

где максимальный момент сил соответствует углу ​\( \alpha \)​ = 90°.

В этом случае линии магнитной индукции лежат в плоскости рамки, и ее положение равновесия является неустойчивым. Устойчивым будет положение рамки с током в случае, когда плоскость рамки перпендикулярна линиям магнитной индукции.

Взаимодействие магнитов

Постоянные магниты – это тела, длительное время сохраняющие намагниченность, то есть создающие магнитное поле.

Основное свойство магнитов: притягивать тела из железа или его сплавов (например стали). Магниты бывают естественные (из магнитного железняка) и искусственные, представляющие собой намагниченные железные полосы. Области магнита, где его магнитные свойства выражены наиболее сильно, называют полюсами. У магнита два полюса: северный ​\( N \)​ и южный ​\( S \)​.

Важно!
Вне магнита магнитные линии выходят из северного полюса и входят в южный полюс.

Разделить полюса магнита нельзя.

Объяснил существование магнитного поля у постоянных магнитов Ампер. Согласно его гипотезе внутри молекул, из которых состоит магнит, циркулируют элементарные электрические токи.

Если эти токи ориентированы определенным образом, то их действия складываются и тело проявляет магнитные свойства.

Если эти токи расположены беспорядочно, то их действие взаимно компенсируется и тело не проявляет магнитных свойств.

Магниты взаимодействуют: одноименные магнитные полюса отталкиваются, разноименные – притягиваются.

Магнитное поле проводника с током

Электрический ток, протекающий по проводнику с током, создает в окружающем его пространстве магнитное поле. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле.

Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.

Направление линий магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику.

Направление магнитных силовых линий можно определить по правилу буравчика: если поступательное движение буравчика (1) совпадает с направлением тока (2) в проводнике, то вращение его рукоятки укажет направление силовых линий (4) магнитного поля вокруг проводника.

При изменении направления тока линии магнитного поля также изменяют свое направление.

По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля уменьшается.

Направление тока в проводнике принято изображать точкой, если ток идет к нам, и крестиком, если ток направлен от нас.

Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.

В проводнике, согнутом в виде витка, магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление.

Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются.

При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается.

Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки.

Магнитное поле катушки с током имеет такую же форму, как и поле прямолинейного постоянного магнита: силовые магнитные линии выходят из одного конца катушки и входят в другой ее конец. Поэтому катушка с током представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такую катушку называют электромагнитом.

Направление линий магнитной индукции катушки с током находят по правилу правой руки:

если мысленно обхватить катушку с током ладонью правой руки так, чтобы четыре пальца указывали направление тока в ее витках, тогда большой палец укажет направление вектора магнитной индукции.

Для определения направления линий магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика:

если вращать ручку буравчика по направлению тока в витке или катушке, то поступательное движение буравчика укажет направление вектора магнитной индукции.

Электромагниты нашли чрезвычайно широкое применение в технике. Полярность электромагнита (направление магнитного поля) можно определить и с помощью правила правой руки.

Сила Ампера

Сила Ампера – сила, которая действует на проводник с током, находящийся в магнитном поле.

Закон Ампера: на проводник c током силой ​\( I \)​ длиной ​\( l \)​, помещенный в магнитное поле с индукцией ​\( \vec{B} \)​, действует сила, модуль которой равен:

где ​\( \alpha \)​ – угол между проводником с током и вектором магнитной индукции ​\( \vec{B} \)​.

Направление силы Ампера определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​\( B_\perp \)​ входила в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец покажет направление силы Ампера.

Сила Ампера не является центральной. Она направлена перпендикулярно линиям магнитной индукции.

Сила Ампера широко используется. В технических устройствах создают магнитное поле с помощью проводников, по которым течет электрический ток.

Электромагниты используют в электромеханическом реле для дистанционного выключения электрических цепей, магнитном подъемном кране, жестком диске компьютера, записывающей головке видеомагнитофона, в кинескопе телевизора, мониторе компьютера.

В быту, на транспорте и в промышленности широко применяют электрические двигатели. Взаимодействие электромагнита с полем постоянного магнита позволило создать электроизмерительные приборы (амперметр, вольтметр).

Простейшей моделью электродвигателя служит рамка с током, помещенная в магнитное поле постоянного магнита. В реальных электродвигателях вместо постоянных магнитов используют электромагниты, вместо рамки – обмотки с большим числом витков провода.

Коэффициент полезного действия электродвигателя:

где ​\( N \)​ – механическая мощность, развиваемая двигателем.

Коэффициент полезного действия электродвигателя очень высок.

Алгоритм решения задач о действии магнитного поля на проводники с током:

  • сделать схематический чертеж, на котором указать проводник или контур с током и направление силовых линий поля;
  • отметить углы между направлением поля и отдельными элементами контура;
  • используя правило левой руки, определить направление силы Ампера, действующей на проводник с током или на каждый элемент контура, и показать эти силы на чертеже;
  • указать все остальные силы, действующие на проводник или контур;
  • записать формулы для остальных сил, упоминаемых в задаче. Выразить силы через величины, от которых они зависят. Если проводник находится в равновесии, то необходимо записать условие его равновесия (равенство нулю суммы сил и моментов сил);
  • записать второй закон Ньютона в векторном виде и в проекциях;
  • решить полученную систему уравнений относительно неизвестной величины;
  • решение проверить.

Сила Лоренца

Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Формула для нахождения силы Лоренца:

где ​\( q \)​ – заряд частицы, ​\( v \)​ – скорость частицы, ​\( B \)​ – модуль вектора магнитной индукции, ​\( \alpha \)​ – угол между вектором скорости частицы и вектором магнитной индукции.

Направление силы Лоренца определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​\( B_\perp \)​ входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.

Если заряд частицы отрицательный, то направление силы изменяется на противоположное.

Важно!
Если вектор скорости сонаправлен с вектором магнитной индукции, то частица движется равномерно и прямолинейно.

В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы.

Если вектор скорости перпендикулярен вектору магнитной индукции, то частица движется по окружности, радиус которой равен:

где ​\( m \)​ – масса частицы, ​\( v \)​ – скорость частицы, ​\( B \)​ – модуль вектора магнитной индукции, ​\( q \)​ – заряд частицы.

В этом случае сила Лоренца играет роль центростремительной и ее работа равна нулю. Период (частота) обращения частицы не зависит от радиуса окружности и скорости частицы. Формула для вычисления периода обращения частицы:

Угловая скорость движения заряженной частицы:

Важно!
Сила Лоренца не меняет кинетическую энергию частицы и модуль ее скорости. Под действием силы Лоренца изменяется направление скорости частицы.

Если вектор скорости направлен под углом ​\( \alpha \)​ (0° < \( \alpha \) < 90°) к вектору магнитной индукции, то частица движется по винтовой линии.

В этом случае вектор скорости частицы можно представить как сумму двух векторов скорости, один из которых, ​\( \vec{v}_2 \)​, параллелен вектору \( \vec{B} \), а другой, \( \vec{v}_1 \), – перпендикулярен ему.

Вектор \( \vec{v}_1 \) не меняется ни по модулю, ни по направлению. Вектор \( \vec{v}_2 \) меняется по направлению. Сила Лоренца будет сообщать движущейся частице ускорение, перпендикулярное вектору скорости \( \vec{v}_1 \). Частица будет двигаться по окружности.

Период обращения частицы по окружности – ​\( T \)​.

Таким образом, на равномерное движение вдоль линии индукции будет накладываться движение по окружности в плоскости, перпендикулярной вектору \( \vec{B} \). Частица движется по винтовой линии с шагом ​\( h=v_2T \)​.

Важно!
Если частица движется в электрическом и магнитном полях, то полная сила Лоренца равна:

Особенности движения заряженной частицы в магнитном поле используются в масс-спектрометрах – устройствах для измерения масс заряженных частиц; ускорителях частиц; для термоизоляции плазмы в установках «Токамак».

Алгоритм решения задач о действии магнитного (и электрического) поля на заряженные частицы:

  • сделать чертеж, указать на нем силовые линии магнитного (и электрического) поля, нарисовать вектор начальной скорости частицы и отметить знак ее заряда;
  • изобразить силы, действующие на заряженную частицу;
  • определить вид траектории частицы;
  • разложить силы, действующие на заряженную частицу, вдоль направления магнитного поля и по направлению, ему перпендикулярному;
  • составить основное уравнение динамики материальной точки по каждому из направлений разложения сил;
  • выразить силы через величины, от которых они зависят;
  • решить полученную систему уравнений относительно неизвестной величины;
  • решение проверить.

Основные формулы раздела «Магнитное поле»

Источник: https://fizi4ka.ru/egje-2018-po-fizike/magnitnoe-pole.html

��� ����� ��������� ��������

Как определить магнитную индукцию в точке...

� ���� ������ �� ����������� ����������� � ���, ��� ����� ��������� ��������, ��� ��� ������� � ��������� �����, ����� ��������� ����� ��������� �������� � ����, � ��� ��������� �� ���. �������� �������� �������, ������������ ����������� ������������ �����, � ����� ������� ��������� �������, ������� ������� � ������� ����� ��������������.

������� ��������������� ���������� ���� � ��������� ����� ������������ �������� ��������� �������� �.

��� ��������� �������� ���������� ����, � ������� ��������� ���� ��������� �� ���������� � ��� ���������� �������.

���� ����� ������� ����� q, �� �������� ����� v, � �������� ���������� ���� � ������ ����� ������������ ����� �, �� �� ������� � ������ ����� �� ������� ���������� ���� ��������� ����, ������:

����� �������, � � ��� ������, �������� � ����������� �������� ������, ��� ���� �������, ����������� �� ���������� ����� �� ������� ���������� ���� �����:

����� ����� � ��� ���� ����� �������� �������� � �������� ��������� ��������. ������ ���� ������� F ��������������� ������� �������� � ������� ��������� ��������. ��� ����������� ��� ������ �������� ������������ ���������� ������� � ���������� ��������� ���� ������������ �������� ����� ����:

����� ����� ���� ����������� ���, ����� ������ ��������� �������� ������ � ������, � ������ ��������� ������ ���� ���������� �� ����������� �������� ������������ ���������� �������, �� ��������� �� 90 �������� ������� ����� ������� ����������� ���� �������.

��������� ��� � ���������� �������� ��������� ���������� ������, �� ��������� �������� ����� ���������� � ��� ��������� ������������� ������������� �������, ������������ �� ������� ����������� ���������� ���� �� ����� � �����, � ������������ ���� ���� � ����� �� ������� �����:

��������� �������� � ��������������� �������������� ���������� ����, ��� ������������� ��� �������������� ����. � ������� �� ��������� �������� ���������� � ����� (��), � ������� ��� � � ������� (��).

1 ����� = 10000 �����.

1 �� � ��� �������� ������ ����������� ���������� ����, � ������� �� ����� �������� 1 �2, �� ������� ����� ��� � 1 �, ��������� ������������ ��������� ������������ ������ ���, ������ 1 � � �.

������, �������� ���������� ���� ����� �� ������ 50� � ������� ���������� 0,00005 ��, � �� �������� � 0,000031 ��. ������ ��������� �������� ������ ��������� �� ����������� � ��������� ������� �����.

������, ���������� � ���������� ��������� ����, ������������� ��������� ������� �, — ������� ������� ��������� ��������.

�������� ���������� ������ � ������� �� ����������� ������� ��������� �������� ������������ �������, �� ��� ��������, � �� ������� �������, �������������� ������� ��������� ��������.

���� ������ � ����� ��������������� ������� �������, �� ��������� ����� �, ������������� ������, ����� ������������.

��� ������ �������� ���������� �� ���������� «��������», ��� �������� «���������» (��������, ������� �� ����� � �� ���� ������� �����). ��������: ���������, �������������, �����������. �� ������ � �������� ���������������� ��������.

��������� � ����� ����� ������ ���� ��������� ����. ������ ��������� ���� �������������� ���� � 1820 ���� ������� ����� ���� �������� ������. ��� ����������� ����������� ������� ����� �������� ���������� ���� � �������������� ���� I, �������� �� �������������� ����������, ���������� �������� ������� ����� ��� ���������:

������������ �������� �������� ��������� ���������� ����������� ����� ��������� �������� �, � �������������� �������� ��������� ����� ������������� ����������� ���� � ����������.�

��� ���� �������� ��������� �������� B �� ���������� R �� ���������� � ����� I ����� ���� ������� ��� �������:

��� ��������� ����������:

���� ����� ������������� ������������������� ���� � ��������� �� ������������� �������, ������������� �� �������������, �� ����� ��������� �������� B �������� ������. � ������� �� ������������� �������, ��������� �������, ������� �� ��������� ������ ������� ������������� �������, � ������� �� ����������.

������ ��������� ���� � ���������� ��������. ��� � ������ 19 ����, ����������� ������������� � �����-������������������ �����-���� ����� �������� �������� � ������������ �����.

�������� ������, �������� ���������� ������ ������� ���� ��������� ������������ ����, ������� � ���� ������� ������� ������ ���� ������������ ��������� ����.

� ���� ����� �������������� ��������� �� ������� ��������� ����, �� ��� ���������������� ��������� �������������� �� ������� ����, � ����� �������������� ������ ��������.

�������� � ������� ��������� ���������� ���������������, ����� ��� ����� ������-������-���, ��������� ������� �������� ������ ���������� �������. ���������� ������� ������ �� ����� 1-2 % ����� ��������������� �� 10 ���. �� �� ����� ����� ������������, ������ �� ����������� +70�C � �����.

��������, ��� ������ ������ ������� ��� �������� ����� ������������� � ���, ��� ����� ��������� �������� � ������ �� ���������.

Источник: http://ElectricalSchool.info/spravochnik/electroteh/1783-chto-takoe-magnitnaja-indukcija.html

III. Основы электродинамики

Как определить магнитную индукцию в точке...

Уже в VI в. до н.э. в Китае было известно, что некоторые руды обладают способностью притягиваться друг к другу и притягивать железные предметы. Куски таких руд были найдены возле города Магнесии в Малой Азии, поэтому они получили название магнитов.

Посредством чего взаимодействуют магнит и железные предметы? Вспомним, почему притягиваются наэлектризованные тела? Потому что около электрического заряда образуется своеобразная форма материи — электрическое поле. Вокруг магнита существует подобная форма материи, но имеет другую природу происхождения (ведь руда электрически нейтральна), ее называют магнитным полем.

Для изучения магнитного поля используют прямой или подковообразный магниты. Определенные места магнита обладают наибольшим притягивающим действием, их называют полюсами (северный и южный). Разноименные магнитные полюса притягиваются, а одноименные — отталкиваются.

Для силовой характеристики магнитного поля используют вектор индукции магнитного поля B. Магнитное поле графически изображают при помощи силовых линий (линии магнитной индукции). Линии являются замкнутыми, не имеют ни начала, ни конца. Место, из которого выходят магнитные линии — северный полюс (North), входят магнитные линии в южный полюс (South).

Магнитное поле можно сделать «видимым» с помощью железных опилок.

Направление вектора магнитной индукции

Направление магнитного поля в данной точке можно определить как направление, которое указывает северный полюс стрелки компаса, помещенного в эту точку.

Направление линий магнитной индукции зависит от направления тока в проводнике.

Определяется направление вектора индукции по правилу буравчика или правилу правой руки.

Вектор магнитной индукции

Это векторная величина, характеризующая силовое действие поля.

Индукция магнитного поля бесконечного прямолинейного проводника с током на расстоянии r от него:

Индукция магнитного поля в центре тонкого кругового витка радиуса r:

Индукция магнитного поля соленоида (катушка, витки которой последовательно обходятся током в одном направлении):

Принцип суперпозиции

Если магнитное поле в данной точке пространства создается несколькими источниками поля, то магнитная индукция — векторная сумма индукций каждого из полей в отдельности

Магнитное поле Земли

Земля является не только большим отрицательным зарядом и источником электрического поля, но в то же время магнитное поле нашей планеты подобно полю прямого магнита гигантских размеров.

Географический юг находится недалеко от магнитного севера, а географический север приближен к магнитному югу. Если компас разместить в магнитном поле Земли, то его северная стрелка ориентируется вдоль линий магнитной индукции в направлении южного магнитного полюса, то есть укажет нам, где располагается географический север.

Характерные элементы земного магнетизма весьма медленно изменяются с течением времени — вековые изменения. Однако время от времени происходят магнитные бури, когда в течение нескольких часов магнитное поле Земли сильно искажается, а затем постепенно возвращается к прежним значениям. Такое резкое изменение влияет на самочувствие людей.

Магнитное поле Земли является «щитом», прикрывающего нашу планету от частиц, проникающих из космоса («солнечного ветра»). Вблизи магнитных полюсов потоки частиц подходят гораздо ближе к поверхности Земли. При мощных солнечных вспышках магнитосфера деформируется, и эти частицы могут переходить в верхние слои атмосферы, где сталкиваются с молекулами газа, образуются полярные сияния.

Применение магнитного поля

Частицы диоксида железа на магнитной пленке хорошо намагничиваются в процессе записи.

Поезда на магнитной подушке скользят над поверхностью совершенно без трения. Поезд способен развивать скорость до 650 км/ч.

Работа головного мозга, пульсация сердца сопровождается электрическими импульсами. При этом в органах возникает слабое магнитное поле.

Источник: http://fizmat.by/kursy/magnetizm/magnit_pole

Магнитная индукция в вакууме

Как определить магнитную индукцию в точке...

Всем доброго времени суток. В прошлой статье я рассказал о магнитном поле и немного остановился на его параметрах.

Данная статья продолжает тему магнитного поля и посвящена такому параметру как магнитная индукция.

Для упрощения темы я буду рассказывать о магнитном поле в вакууме, так как различные вещества имеют разные магнитные свойства, и как следствие необходимо учитывать их свойства.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Закон Био – Савара – Лапласа

В результате исследования магнитных полей создаваемых электрическим током, исследователи пришли к таким выводам:

  • магнитная индукция, создаваемая электрическим током пропорциональна силе тока;
  • магнитная индукция имеет зависимость от формы и размеров проводника, по которому протекает электрический ток;
  • магнитная индукция в любой точке магнитного поля зависит от расположения данной точки по отношению к проводнику с током.

Французские учёные Био и Савар, которые пришли к таким выводам обратились к великому математику П. Лапласу для обобщения и вывода основного закона магнитной индукции.

Он высказал гипотезу, что индукция в любой точке магнитного поля, создаваемое проводником с током можно представить в виде суммы магнитных индукций элементарных магнитных полей, которые создаются элементарным участком проводника с током.

Данная гипотеза и стала законом магнитной индукции, называемого законом Био – Савара – Лапласа. Для рассмотрения данного закона изобразим проводник с током и создаваемую им магнитную индукцию

Магнитная индукция dB, создаваемая элементарным участком проводника dl.

Тогда магнитная индукция dB элементарного магнитного поля, которое создается участком проводника dl, с током I в произвольной точке Р будет определяться следующим выражением

где I – сила тока, протекающая по проводнику,

r – радиус-вектор, проведённый от элемента проводника к точке магнитного поля,

dl – минимальный элемент проводника, который создает индукцию dB,

k – коэффициент пропорциональности, зависящий от системы отсчёта, в СИ k = μ0/(4π)

Так как [dl r] является векторным произведением, тогда итоговое выражение для элементарной магнитной индукции будет выглядеть следующим образом

Таким образом, данное выражение позволяет найти магнитную индукцию магнитного поля, которое создается проводником с током произвольной формы и размеров при помощи интегрирования правой части выражения

где символ l обозначает, что интегрирование происходит по всей длине проводника.

Магнитная индукция прямолинейного проводника

Как известно простейшее магнитное поле создает прямолинейный проводник, по которому протекает электрический ток. Как я уже говорил в предыдущей статье, силовые линии данного магнитного поля представляют собой концентрические окружности расположенные вокруг проводника.

Магнитная индукция магнитного поля создаваемого прямолинейным проводником с током.

Для определения магнитной индукции В прямого провода в точке Р введем некоторые обозначения.

Так как точка Р находится на расстоянии b от провода, то расстояние от любой точки провода до точки Р определяется как r = b/sinα.

Тогда наименьшую длину проводника dl можно вычислить из следующего выражения

В итоге закон Био – Савара – Лапласа для прямолинейного провода бесконечной длины будет иметь вид

где I – ток, протекающий по проводу,

b – расстояние от центра провода до точки, в которой рассчитывается магнитная индукция.

Теперь просто проинтегрируем получившееся выражение по в пределах от 0 до π.

Таким образом, итоговое выражение для магнитной индукции прямолинейного провода бесконечной длины будет иметь вид

где μ0  – магнитная постоянная, μ0 = 4π•10-7 Гн/м,

I – ток, протекающий по проводу,

b – расстояние от центра проводника до точки, в которой измеряется индукция.

Магнитная индукция кольца

Индукция прямого провода имеет небольшое значение и уменьшается при удалении от проводника, поэтому в практических устройствах практически не применяется.

Наиболее широко используются магнитные поля созданные проводом, намотанным на какой либо каркас. Поэтому такие поля называются магнитными полями кругового тока.

Простейшим таким магнитным поле обладает электрический ток, протекающий по проводнику, который имеет форму окружности радиуса R.

В данном случае практический интерес представляет два случая: магнитное поле в центре окружности и магнитное поле в точке Р, которое лежит на оси окружности. Рассмотрим первый случай.

Магнитная индукция в центре кругового тока.

В данном случае каждый элемент тока dl создаёт в центре окружности элементарную магнитную индукцию dB, которая перпендикулярна к плоскости контура, тогда закон Био-Савара-Лапласа будет иметь вид

Остается только проинтегрировать полученное выражение по всей длине окружности

где μ0  – магнитная постоянная, μ0 = 4π•10-7 Гн/м,

I – сила тока в проводнике,

R – радиус окружности, в которое свернут проводник.

Рассмотрим второй случай, когда точка, в которой вычисляется магнитная индукция, лежит на прямой х, которая перпендикулярна плоскости ограниченной круговым током.

Магнитная индукция в точке, лежащей на оси окружности.

В данном случае индукция в точке Р будет представлять собой сумму элементарных индукций dBX, которые в свою очередь представляет собой проекцию на ось х элементарной индукции dB

Применив закон Био-Савара-Лапласа вычислим величину магнитной индукции

Теперь проинтегрируем данное выражение по всей длине окружности

где μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м,

I – сила тока в проводнике,

R – радиус окружности, в которое свернут проводник,

х – расстояние от точки, в которой вычисляется магнитная индукция, до центра окружности.

Как видно из формулы при х = 0, получившееся выражение переходит в формулу для магнитной индукции в центре кругового тока.

Циркуляция вектора магнитной индукции

Для расчёта магнитной индукции простых магнитных полей достаточно закона Био-Савара-Лапласа. Однако при более сложных магнитных полях, например, магнитное поле соленоида или тороида, количество расчётов и громоздкость формул значительно увеличится. Для упрощения расчётов вводится понятие циркуляции вектора магнитной индукции.

Циркуляция вектора магнитной индукции по произвольному контуру.

Представим некоторый контур l, который перпендикулярный току I. В любой точке Р данного контура, магнитная индукция В направлена по касательной к данному контуру. Тогда произведение векторов dl и В описывается следующим выражением

Так как угол достаточно мал, то векторов dlВ определяется, как длина дуги

Таким образом, зная магнитную индукцию прямолинейного проводника в данной точке, можно вывести выражение для циркуляции вектора магнитной индукции

Теперь остаётся проинтегрировать получившееся выражение по всей длине контура

В нашем случае вектор магнитной индукции циркулирует вокруг одного тока, в случае же нескольких токов выражение циркуляции магнитной индукции переходит в закон полного тока, который гласит:

Циркуляция вектора магнитной индукции по замкнутому контуру пропорциональна алгебраической сумме токов, которые охватывает данный контур.

Магнитное поле соленоида и тороида

С помощью закона полного тока и циркуляции вектора магнитной индукции достаточно легко определить магнитную индукцию таких сложных магнитных полей как у соленоида и тороида.

Соленоидом называется цилиндрическая катушка, которая состоит из множества витков проводника, намотанных виток к витку на цилиндрический каркас. Магнитное поле соленоида фактически состоит из множества магнитных полей кругового тока с общей осью, перпендикулярной к плоскости каждого кругового тока.

Магнитная индукция соленоида.

Воспользуемся циркуляцией вектора магнитной индукции и представим циркуляцию по прямоугольному контуру 1-2-3-4. Тогда циркуляция вектора магнитной индукции для данного контура будет иметь вид

Так как на участках 2-3 и 4-1 вектор магнитной индукции перпендикулярен к контуру, то циркуляция равна нулю. На участке 3-4, который значительно удалён от соленоида, то его так же можно не учитывать. Тогда с учётом закона полного тока магнитная индукция в соленоиде достаточно большой длины будет иметь вид

где n – число витков проводника соленоида, которое приходится на единицу длины,

I – ток, протекающий по соленоиду.

Тороид образуется путём намотки проводника на кольцевой каркас. Данная конструкция эквивалентна системе из множества одинаковых круговых токов, центры которых расположены на окружности.

Магнитная индукция тороида.

В качестве примера рассмотрим тороид радиуса R, на который намотано N витков провода.

Вокруг каждого витка провода возьмём контур радиуса r, центр данного контура совпадает в центром тороида.

Так как вектор магнитной индукции B направлен по касательной к контуру в каждой точке контура, то циркуляция вектора магнитной индукции будет иметь вид

где r – радиус контура магнитной индукции.

Контур проходя внутри тороида охватывает N витков провода с током I, тогда закон полного тока для тороида будет иметь вид

где n – число витков проводника, которое приходится на единицу длины,

r – радиус контура магнитной индукции,

R – радиус тороида.

Таким образом, используя закон полного тока и циркуляцию вектора магнитной индукции можно рассчитать сколь угодно сложное магнитное поле. Однако закон полного тока дает правильные результаты только лишь в вакууме. В случае расчёта магнитной индукции в веществе необходимо учитывать так называемые молекулярные токи. Об этом пойдёт речь в следующей статье.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Источник: https://www.electronicsblog.ru/nachinayushhim/magnitnaya-indukciya-v-vakuume.html

Biz-books
Добавить комментарий