Как определить концентрацию второго раствора…

Способы выражения концентрации растворов — ХиМуЛя.com

Как определить концентрацию второго раствора...

 Изучите материал!

Процентная концентрация раствора
  • Выписать в тетрадь!
    1. Процентной концентрацией раствора (С) называется массовая доля растворённого вещества в растворе (W), выраженная в %:

С% = W% (растворённого вещества) = (m растворённого вещества• 100%) /m раствора

    1. Процентная концентрация показывает, сколько единиц массы (г, кг) растворённого вещества содержится в каждых 100 единицах массы (г, кг) раствора
    2. При смешивании двух различных растворов, массовую долю растворённого вещества во вновь полученном растворе определяют по правилу смешения:

m1/m2 = (W3-W2)/(W1-W3)

Молярная концентрация раствора1.        Молярную концентрацию(Cm) растворов определяют по формуле:Cm = υрастворённого вещества/ Vраствора           где   ν = m/M   — количество вещества          (здесь М — молярная масса вещества),   V – объём2.        Cm   измеряют в моль/л или моль/м3 (в системе СИ).3.        Молярная концентрация показывает количество растворённого вещества (моль), содержащегося в 1л раствора.

РЕШИТЕ ЗАДАЧИ!

Задачи по теме: Массовая доля растворенного вещества.

1.     Вычислите массовую долю растворенного вещества, если в 150 г. воды растворили 7 г. соли.

( Ответ: 4,46 %)

2.     В 80 мл. воды растворили 6 г. глюкозы. Рассчитайте массовую долю глюкозы в полученном растворе.

( Ответ: 6,98 %)

3. Какую массу сахара нужно взять и какой объем воды, чтобы приготовить раствор массой 240 г. с массовой долей сахара 6%.   

( Ответ: 14,4 г. сахара; 225,6 мл. воды)

4. Вычислите массы соли и воды, необходимые для приготовления 

300 г. раствора с массовой долей соли 15 %.

( Ответ: 45 г. соли; 255 г. воды)

5. Выпарили 150 г. раствора с массовой долей сахара 15 %. Вычислите массу сахара, оставшегося в чашке после выпаривания воды.

( Ответ: 22,5 г.)

II уровень.

6. Сколько граммов сульфата меди необходимо смешать с 450 г. воды, чтобы получить раствор с массовой долей 10 %.

( Ответ: 50 г.)

7. В каком количестве воды нужно растворить 40 г. соли для получения раствора с массовой долей 25 %.

( Ответ: 120 г.)

8. Смешали 150 г. раствора с массовой долей серной кислоты 10 % и 250 г. раствора с массовой долей серной кислоты 8 %. Определите массовую долю кислоты в полученной смеси.

( Ответ: 8,75 %)

9. 120 г. раствора с массовой долей соли 10 % упарили до 80 г. Какова массовая доля (в %) соли в упаренном растворе?

( Ответ: 15 %)

10.     Определите массовую долю серной кислоты в растворе, если к 600 г. раствора с массовой долей 12 % добавили ещё 200 мл. воды.

( Ответ: 9 %)

III уровень.

11.     Определите массу соли, которую нужно добавить к 80 г. раствора с массовой долей соли 10 %, чтобы получить раствор с массовой долей этой соли 25 %.

( Ответ: 16 г.)

12.     Определите массу воды, которую нужно добавить к 50 г. раствора с массовой долей соли 5 %, чтобы получить раствор с массовой долей соли 2 %.

( Ответ: 75 г.)

13.     Необходимо приготовить 500 г. раствора серной кислоты, массовая доля которой 0,3. Вычислите массу 98 %-го раствора серной кислоты, которая потребуется для приготовления такого раствора.

( Ответ: 153,06 г.)

14.     В 130 мл. воды растворили 35,8 г. ZnSO4. 7 H20. Рассчитайте массовую долю растворенного вещества.

( Ответ: 12,11 %)

15.     Какой объем газа HI (н.у.) нужно растворить в воде, чтобы получить 40 г. раствора HI с массовой долей 20 %.

( Ответ: 1,41 л.)

Задачи по теме: «Молярная концентрация раствора»

1. Вычислите массу хлорида натрия, необходимого для приготовления 200мл раствора, в котором концентрация нитрата калия равна 0,5моль/л.

2. Вычислите объём раствора с молярной концентрацией 2,5моль/л, содержащего 6 моль хлорида натрия.

3. Вычислите  молярную концентрацию раствора поваренной соли, если в 1 л этого раствора содержится 25 моль хлорида натрия.

4. Вычислите молярную массу вещества, если известно, что в 36 л раствора с молярной концентрацией 9 моль/л было растворено 1440 г вещества.

ТИПЫ ЗАДАЧ ПО ТЕМЕ: «РАСТВОРЫ»

Источник: https://www.sites.google.com/site/himulacom/ucimsa-resat-zadaci/sposoby-vyrazenia-koncentracii-rastvorov

Концентрация растворов

Как определить концентрацию второго раствора...

Способы выражения концентрации растворов Существуют различные способы выражения состава раствора. Наиболее часто используют массовую долю растворённого вещества, молярную и нормальную концентрацию.


Массовая доля растворённого вещества
w(B) — это безразмерная величина, равная отношению массы растворённого вещества к общей массе раствора m:

w(B)= m(B) / m
Массовую долю растворённого вещества w(B) обычно выражают в долях единицы или в процентах. Например, массовая доля растворённого вещества — CaCl2 в воде равна 0,06 или 6%. Это означает,что в растворе хлорида кальция массой 100 г содержится хлорид кальция массой 6 г и вода массой 94 г. Пример Сколько грамм сульфата натрия и воды нужно для приготовления 300 г 5% раствора? Решение

m(Na2SO4) = w(Na2SO4) / 100 = (5300) / 100 = 15 г

где w(Na2SO4) — массовая доля в %, m — масса раствора в г

m(H2O) = 300 г — 15 г = 285 г.

Таким образом, для приготовления 300 г 5% раствора сульфата натрия надо взять 15 г Na2SO4 и 285 г воды.


Молярная концентрация C(B) показывает, сколько моль растворённого вещества содержится в 1 литре раствора.
C(B) = n(B) / V = m(B) / (M(B)V),

где М(B) — молярная масса растворенного вещества г/моль.

Молярная концентрация измеряется в моль/л и обозначается «M». Например, 2 MNaOH — двухмолярный раствор гидроксида натрия. Один литр такого раствора содержит 2 моль вещества или 80 г (M(NaOH) = 40 г/моль).

Пример

Какую массу хромата калия K2CrO4 нужно взять для приготовления 1,2 л 0,1 М раствора?

Решение M(K2CrO4) = C(K2CrO4)

V M(K2CrO4) = 0,1 моль/л 1,2 л 194 г/моль = 23,3 г.

Таким образом, для приготовления 1,2 л 0,1 М раствора нужно взять 23,3 г K2CrO4 и растворить в воде, а объём довести до 1,2 литра. Концентрацию раствора можно выразить количеством молей растворённого вещества в 1000 г растворителя.

Такое выражение концентрации называют моляльностью раствора.


Нормальность раствора обозначает число грамм-эквивалентов данного вещества в одном литре раствора или число миллиграмм-эквивалентов в одном миллилитре раствора.

Грамм — эквивалентом вещества называется количество граммов вещества, численно равное его эквиваленту. Для сложных веществ — это количество вещества, соответствующее прямо или косвенно при химических превращениях 1 грамму водорода или 8 граммам кислорода.

Эоснования = Моснования / число замещаемых в реакции гидроксильных групп

Экислоты = Мкислоты / число замещаемых в реакции атомов водорода
Эсоли = Мсоли / произведение числа катионов на его заряд Пример Вычислите значение грамм-эквивалента (г-экв.) серной кислоты, гидроксида кальция и сульфата алюминия.

Э H2SO4 = М H2SO4 / 2 = 98 / 2 = 49 г

Э Ca(OH)2 = М Ca(OH)2 / 2 = 74 / 2 = 37 г
Э Al2(SO4)3 = М Al2(SO4)3 / (23) = 342 / 2= 57 г

Величины нормальности обозначают буквой «Н». Например, децинормальный раствор серной кислоты обозначают «0,1 Н раствор H2SO4».

Так как нормальность может быть определена только для данной реакции, то в разных реакциях величина нормальности одного и того же раствора может оказаться неодинаковой.

Так, одномолярный раствор H2SO4 будет однонормальным, когда он предназначается для реакции со щёлочью с образованием гидросульфата NaHSO4, и двухнормальным в реакции с образованием Na2SO4. Пример

Рассчитайте молярность и нормальность 70%-ного раствора H2SO4 (r = 1,615 г/мл).

Решение

Для вычисления молярности и нормальности надо знать число граммов H2SO4 в 1 л раствора. 70% -ный раствор H2SO4 содержит 70 г H2SO4 в 100 г раствора. Это весовое количество раствора занимает объём

V = 100 / 1,615 = 61,92 мл

Следовательно, в 1 л раствора содержится 701000 / 61,92 = 1130,49 г H2SO4

Отсюда молярность данного раствора равна: 1130,49 / М (H2SO4) =1130,49 / 98 =11,53 M Нормальность этого раствора (считая, что кислота используется в реакции в качестве двухосновной) равна 1130,49 / 49 =23,06 H

Пересчет концентраций растворов из одних единиц в другие

При пересчете процентной концентрации в молярную и наоборот, необходимо помнить, что процентная концентрация рассчитывается на определенную массу раствора, а молярная и нормальная — на объем, поэтому для пересчета необходимо знать плотность раствора. Если мы обозначим: с — процентная концентрация; M — молярная концентрация; N — нормальная концентрация; э — эквивалентная масса, r — плотность раствора; m — мольная масса, то формулы для пересчета из процентной концентрации будут следующими:

M = (cp 10) / m

N = (cp 10) / э

Этими же формулами можно воспользоваться, если нужно пересчитать нормальную или молярную концентрацию на процентную. Пример 1

Какова молярная и нормальная концентрация 12%-ного раствора серной кислоты, плотность которого р = 1,08 г/см3?

Решение Мольная масса серной кислоты равна 98. Следовательно,

m(H2SO4) = 98 и э(H2SO4) = 98 : 2 = 49.

Подставляя необходимые значения в формулы, получим: а) Молярная концентрация 12% раствора серной кислоты равна

M = (121,08 10) / 98 = 1,32 M

б) Нормальная концентрация 12% раствора серной кислоты равна
N = (121,08 10) / 49 = 2,64 H.

Иногда в лабораторной практике приходится пересчитывать молярную концентрацию в нормальную и наоборот. Если эквивалентная масса вещества равна мольной массе (Например, для HCl, KCl, KOH), то нормальная концентрация равна молярной концентрации. Так, 1 н.

раствор соляной кислоты будет одновременно 1 M раствором. Однако для большинства соединений эквивалентная масса не равна мольной и, следовательно, нормальная концентрация растворов этих веществ не равна молярной концентрации.

Для пересчета из одной концентрации в другую можно использовать формулы:

M = (NЭ) / m

N = (Mm) / Э

Пример
Нормальная концентрация 1 М раствора серной кислоты N = (198) / 49 = 2 H.

Пример
Молярная концентрация 0,5 н. Na2CO3
M = (0,553) / 106 = 0,25 M.Упаривание, разбавление, концентрирование,

смешивание растворов
Имеется mг исходного раствора с массовой долей растворенного вещества w1 и плотностью r1.
Упаривание раствора
В результате упаривания исходного раствора его масса уменьшилась на Dm г. Определить массовую долю раствора после упаривания w2 Решение

Исходя из определения массовой доли, получим выражения для w1 и w2 (w2 > w1):

w1 = m1 / m
(где m1 — масса растворенного вещества в исходном растворе)
m1 = w1m

w2 = m1 / (m — Dm) = (w1m) / (m — Dm)

Пример Упарили 60 г 5%-ного раствора сульфата меди до 50 г. Определите массовую долю соли в полученном растворе.

m = 60 г; Dm = 60 — 50 = 10 г; w1 = 5% (или 0,05)

w2 = (0,0560) / (60 — 10) = 3 / 50 = 0,06 (или 6%-ный)

Концентрирование раствора
Какую массу вещества (X г) надо дополнительно растворить в исходном растворе, чтобы приготовить раствор с массовой долей растворенного вещества w2? Решение

Исходя из определения массовой доли, составим выражение для w1 и w2:

w1 = m1 / m2, (где m1 — масса вещества в исходном растворе).
m1 = w1m

w2 = (m1+x) / (m + x) = (w1m + x) / (m+x)

Решая полученное уравнение относительно х получаем:
w2m + w2 x = w1 m + x

w2m — w1 m = x — w2 x

(w2 — w1)

m = (1 — w2) x

x = ((w2 — w1)m) / (1 — w2)

Пример Сколько граммов хлористого калия надо растворить в 90 г 8%-ного раствора этой соли, чтобы полученный раствор стал 10%-ным? m = 90 г

w1 = 8% (или 0,08), w2 = 10% (или 0,1)

x = ((0,1 — 0,08) 90) / (1 — 0,1) = (0,02 90) / 0,9 = 2 г

Смешивание растворов с разными концентрациями
Смешали m1 граммов раствора №1 c массовой долей вещества w1 и m2 граммов раствора №2 c массовой долей вещества w2.

Образовался раствор (№3) с массовой долей растворенного вещества w3. Как относятся друг к другу массы исходных растворов? Решение

Пусть w1 > w2, тогда w1 > w3 > w2.

Масса растворенного вещества в растворе №1 составляет w1

m1, в растворе №2 — w2 m2. Масса образовавшегося раствора (№3) — (m1 — m2). Сумма масс растворенного вещества в растворах №1 и №2 равна массе этого вещества в образовавшемся растворе (№3):

w 1m1 + w 2 m2 = w3 (m1 + m2)

w1m1 + w 2 m2 = w3 m1 + w3 m2

w 1m1 — w 3 m1 = w3 m2 — w2 m2

(w1- w3)m1 = (w3- w2) m2

m1 / m2 = (w3- w2 ) / (w1- w3)
Таким образом, массы смешиваемых растворов m1 и m2 обратно пропорциональны разностям массовых долей w1 и w2 смешиваемых растворов и массовой доли смеси w3. (Правило смешивания).

Для облегчения использования правила смешивания применяют правило креста :

w1 \(w3 — w2) / m1
w3
/ w2\ (w1 — w3) m2

m1 / m2 = (w3 — w2) / (w1 — w3)
Для этого по диагонали из большего значения концентрации вычитают меньшую, получают (w1 — w3), w1 > w3 и (w3 — w2), w3 > w2.

Затем составляют отношение масс исходных растворов m1 / m2 и вычисляют.

Пример

Определите массы исходных растворов с массовыми долями гидроксида натрия 5% и 40%, если при их смешивании образовался раствор массой 210 г с массовой долей гидроксида натрия 10%.

40% \5% / m1
10%
/ 5%\ 30% m2=210-m1

5 / 30 = m1 / (210 — m1)
1/6 = m1 / (210 — m1)
210 — m1 = 6m1
7m1 = 210
m1 =30 г; m2 = 210 — m1 = 210 — 30 = 180 г

Разбавление раствора
Исходя из определения массовой доли, получим выражения для значений массовых долей растворенного вещества в исходном растворе №1 (w1) и полученном растворе №2 (w2):
w1 = m1 / (r1V1) откуда V1= m1 /( w1 r1)

w2 = m2 / (r2V2)

m2 = w2r2 V2

Раствор №2 получают, разбавляя раствор №1, поэтому m1 = m2. В формулу для V1 следует подставить выражение для m2. Тогда
V1= (w2r2 V2) / (w1 r1)

m2 = w2 • r2 • V2

или

w1 • r1 • V1=w2 • r2 • V2
m1(раствор)m2(раствор)

m1(раствор) / m2(раствор) = w2 / w1 При одном и том же количестве растворенного вещества массы растворов и их массовые доли обратно пропорциональны друг другу. Пример Определите массу 3%-ного раствора пероксида водорода, который можно получить разбавлением водой 50 г его 3%-ного раствора.

m1(раствор) / m2(раствор) = w2 / w1

50 / x = 3 / 30

3x = 50

30 = 1500

x = 500 г
Последнюю задачу можно также решить, используя «правило креста»:

30% \3% / 50
3%
/ 0%\ 27% X

3 / 27 = 50 / x x = 450 г воды

450 г + 50 г = 500 г

Источник: https://www.examen.ru/add/manual/school-subjects/natural-sciences/chemistry/obshhaya-ximiya/konczentracziya-rastvorov/

Расчет концентрации растворов

Как определить концентрацию второго раствора...

Растворы – гомогенные (однородные) системы переменного состава, содержащие два или несколько компонентов.

Компонент, агрегатное состояние которого не изменяется при образовании раствора, принято называть растворителем, а другой компонент – растворенным веществом.

При одинаковом агрегатном состоянии компонентов растворителем считают обычно то вещество, которое преобладает в растворе. Растворы бывают твердыми (сплавы металлов), жидкими и газообразными (смеси газов). В медицине наиболее распространены жидкие (чаще водные) растворы.

Концентрация раствора – величина, измеряемая количеством растворенного вещества в определенном объеме или массе раствора или растворителя. Существуют различные способы выражения концентрации растворов:

Процентная концентрация по массе С% (массовая доля)показывает число единиц массы растворенного вещества (г, кг) в 100 единицах массы раствора (г, кг) и рассчитывается по формуле:

С%=mв-ва· 100% / mр-ра (1),

где mр-ра — масса раствора, в котором содержится масса вещества mв-ва . Следовательно, физиологический раствор (0,9% NaCl) содержит 0,9г NaCl в 100г раствора.

Молярная концентрация СМ (молярность) показывает число молей растворенного вещества в 1л (1дм3) раствора. Согласно определению СМ= ν/V, где количество вещества ν=m/M, а объем раствора V выражен в литрах. Таким образом получаем формулу:

СМ=m / М·V (2),

где m-масса вещества, г; М-молярная масса вещества, г/моль; V – объем раствора, л.

Например, 5М раствор глюкозы содержит 5моль С6Н12О6 в 1л раствора.

Нормальная концентрация СN (нормальность, молярная концентрация эквивалента) показывает, сколько эквивалентов вещества находится в 1л (1дм3) раствора. Эквивалент Э (эквивалентная масса, молярная масса эквивалента) –это реальная или условная частица вещества, которая в данной реакции реагирует с одним атомом или ионом водорода, или одним электроном.

Эквивалент зависит от типа реакции, в которой участвует данное вещество.

В рамках нашего курса не рассматривается образование кислых, основных солей, а также более сложных продуктов, поэтому эквивалент кислоты находится делением молярной массы кислоты на ее основность (число атомов водорода в формуле), эквивалент основания – делением молярной массы на кислотность (число ОН групп), эквивалент соли равен молярной массе, деленной на произведение степени окисления металла на число его атомов в формуле. Например, Э(Н2SO4)= 98/2=49 (г/моль), Э(Са(ОН)2)=74/2=37 (г/моль), Э(Al2(SO4)3)=342/3·2=57 (г/моль). Для реагентов, используемых в окислительно-восстановительных реакциях, эквивалент находят делением молярной массы на число участвующих в превращении электронов.

Нормальную концентрацию рассчитывают по формуле:

СN=m /Э ·V (3),

где m-масса вещества, г; Э-эквивалент, г/моль; V – объем раствора, л. Запись 0,1N HCl (или 0,1н. HCl) означает, что 1л раствора содержит 0,1 эквивалента HCl.

Зная нормальность раствора, можно найти молярность, и наоборот. Так как масса растворенного вещества m=СN · Э · V= СM · M · V, то после сокращения объема получаем:

СN · Э = СM · M (4).

Моляльная концентрация Сm (моляльность) показывает число молей растворенного вещества в 1 кг (1000г) растворителя.

Сm = νв-ва / mр-ля = mв-ва / М · mр-ля (5),

где νв-ва — число моль вещества; mв-ва — масса вещества, г; mр-ля — масса растворителя, кг; М- молярная масса вещества, г/моль.

Например, 0.3Сm раствор NaOH содержит 0,3моль вещества на 1000г воды.

Титр Т — это масса вещества (г) в 1мл (1см3) раствора. Согласно определению Т=m/V (6),

где m –навеска вещества, г; V – объем раствора, мл.

Титр также может быть найден по формуле:

Т=Э · СN /1000 (7),

где Э-эквивалент вещества, г/моль; СN – нормальная концентрация, N; 1000 -коэффициент для пересчета размерности (в 1л 1000мл).

Мольная доля компонента – это отношение числа молей данного вещества к общему числу молей всех веществ в растворе. Если раствор содержит два компонента (1-растворенное вещество, 2- растворитель), то мольные доли находятся следующим образом:

Х1=ν1/( ν1+ ν2);

Х2=ν2/( ν1+ ν2) (8),

где ν1 – число моль растворенного вещества, ν2– число моль растворителя. В сумме Х1+ Х2=1.

Процентная концентрация считается приблизительной, остальные рассмотренные концентрации являются точными и широко применяются в медико-биологических исследованиях, химическом и фармакопейном анализе.

Примеры решения задач

Пример 1.

10мл сыворотки крови взрослого человека содержат 0.015 г холестерина (C27H47O). Найдите процентную концентрацию по массе (массовую долю) и молярность, если принять плотность сыворотки ρ ≈1 г/мл.

Решение:

Процентную концентрацию C% можно найти следующим образом:

, где m(раствора) = V(раствора) · ρ =10 мл · 1г/мл = 10г, тогда C% =0.015·100/10=0.15%;

или воспользуемся определением процентной концентрации, которая показывает число грамм вещества в 100г раствора:

если 0.015г (холестерина) — в 10 г (сыворотки)

то X г (холестерина) — в 100 г (сыворотки),

и получаем такой же ответ: X=C% = 0.015 · 100 / 10 = 0.15 г = 0.15%

Молярная концентрация показывает число моль холестерина в 1 л раствора (сыворотки). Найдем сначала молярную(=молекулярную)массу: Mr(холестерина)= 27·Ar(C)+47·Ar(H)+1·Ar(O)=27·12+47·1+1·16=387;

М=387 г/моль , затем вычислим число моль вещества в данной пробе раствора (в 10мл): n = 0.015 / 387 = 0.0000388 (моль), наконец находим число моль вещества в 1л раствора: CM = 0.0000388 моль / 0.01 л = 0.00388 моль/л = 3.88 мМ.

Ответ: 0.15%; 3.88 мМ.

Пример 2.

Как приготовить 400мл 25% раствора магнезии (MgSO4) с плотностью ρ =1.2 г/мл из более концентрированного 5 М раствора?

Решение:

Найдем массу раствора, который мы собираемся приготовить:

m=V·ρ=400 ·1.2=480 (г)

В соответствии с определением процентной концентрации этот раствор должен содержать

25г (MgSO4) в 100г(раствора),

или X г (MgSO4) в 480г(раствора),

таким образом находим X=25·480 / 100 = 120 (г). Однако по условию задачи у нас нет кристаллического MgSO4 , который мы могли бы взвесить для приготовления раствора: нужно разбавить более концентрированный раствор, который содержит 5 моль (MgSO4) в 1л, или это m (MgSO4)= n· M=5моль · 120 г/моль = 600 г.

Следовательно, найдем объем 5M раствора, который содержит 120 г MgSO4 :

600г(MgSO4) – в 1000 мл

120г(MgSO4) – в X мл , тогда X= 200 мл.

Таким образом, мы отбираем 200мл 5M раствора MgSO4, помещаем в мерную колбу на 400мл, добавляем необходимое количество дистиллированной воды до метки (фактически раствор должен быть разбавлен в 2 раза).

Существует множество других способов решения этого задания. Например, можно использовать формулы или найти сначала число моль MgSO4, необходимое для приготовления раствора: n=120/120=1 моль, …и т.д.].

Ответ: 200мл 5М р-ра разбавить до 400мл.

Пример 3.

Раствор MgSO4 , приготовленный в предыдущем задании, был проверен фармацевтом. Обнаружено, что точная концентрация раствора равна 2.5M. Найдите нормальность, титр, моляльность и мольную долю вещества, если плотность раствора равна 1.2 г / мл.

Каков курс лечения данным препаратом (сколько дней), если пациенту назначили инъекции по 5мл один раз в день и суммарная (кумулятивная) доза должна составить 125 ммоль?

Решение:

Для нахождения нормальной концентрации CN можно воспользоваться формулой CN ·Э = CM ·M, которая позволяет быстро перейти от молярности к нормальности (и наоборот). Для соли эквивалент равен: Э= ,

поэтому CN ·M / 2 = CM ·M, после сокращения получаем CN = 2· CM = 2· 2.5 = 5 (N, н., моль/л)

Титр может быть найден следующим образом :

T=Э · CN / 1000 = 60 ·5 / 1000 = 0.3000 (г/мл)

Моляльная концентрация µ показывает число мольMgSO4 в 1 кг растворителя, поэтому найдем сначала массу 1л раствора, затем массу MgSO4, и наконец массу воды:

m(раствора) = ρ ·V = 1.2 ·1000 = 1200 (г),

m(MgSO4) = n · M = 2.5 · 120 = 300 (г),

m(H2O) = m(раствора) – m (MgSO4) = 1200-300 = 900 (г)

Если 2.5 моль (MgSO4) – в 900 г (воды),

то µ моль(MgSO4) – в 1000 г(воды), получаем µ=2.5·1000/900 = 2.78 (моль/кг)

Для нахождения мольной доли X найдем число моль воды:

n (H2O) = m / M = 900 / 18 = 50 (моль),

затем найдем отношение X(MgSO4) = =0.048

Если раствор магнезии используется в качестве лекарственного препарата, то с разовой дозой 5мл пациент получает следующее число моль MgSO4 :

2.5моль(MgSO4) – в 1000 мл(раствора)

X моль(MgSO4) — в 5 мл(раствора), тогда X=0.0125моль=12.5ммоль

ммоль(в день) · число дней = ммоль(суммарная доза)

12.5 · число дней = 125, => число дней = 10

Курс лечения 10 дней.

Ответ: 5н., 0.3000 г/мл, 2.78 моль/кг, 0.048; 10дней.

Задачи для самостоятельного решения

1. Физиологический раствор для внутривенных инфузий, который является 0.9% раствором NaCl в воде, имеет плотность ρ≈ 1г/мл. Сколько граммов NaCl нужно взвесить для приготовления 400мл раствора ?

2. Витамин B6 (пиридоксина гидрохлорид) обычно используется в виде 5% раствора для инъекций. Сколько миллиграммов витамина содержит одна ампула объемом 1cм3 , если плотность раствора ρ ≈ 1г/мл ?

3. Какая масса адреналина попала в организм, если ввели 1мл 0.1% раствора? (Считайте плотность ρ=1г/мл).

4. Найдите молярную концентрацию физиологического раствора, принимая плотность равной 1г/мл.

5. Рассчитайте молярную концентрацию 10% CaCl2, если плотность ρ=1.1 г/см3.

6. Найдите нормальную концентрацию и титр 0.1M H2SO4. (При условии полного замещения атомов водорода в предстоящей реакции H2SO4).

7. Один моль фруктозы растворили в 500 г воды. Найдите моляльную концентрацию и мольную долю фруктозы в растворе.

8. 10% CaCl2 назначен внутривенно по 10мл, 2 раза в день. Сколько моль CaCl2 получит пациент после 10-дневного курса лечения? (Плотность раствора не учитывать).

9. Рассчитайте молярность 5% раствора глюкозы с плотностью ρ= 1.06 г/мл.

10. Как найти молярную концентрацию и титр 0.1N раствора Ba(OH)2 ? (При условии полного замещения OH-групп в предстоящей реакции Ba(OH)2).

11. Как приготовить 200мл 10% раствора NaCl (ρ=1.1 г/мл) из более концентрированного 5M раствора ?

12. Один литр молока содержит около 10г кальция в виде Ca2+. Какова молярность Ca2+ в молоке?

13. Найдите число моль и массу вещества в каждом из растворов:

а) 0.1л сыворотки крови с концентрацией холестерола (C27H46O), равной

5.04·10-3 M (нормальный средний показатель человеческой крови).

b) 0.5 л моющего средства с концентрацией аммиака (NH3) 0.5 M.

c) 393.6 мл антифриза с концентрацией этиленгликоля (C2H4(OH)2) 9.087 M.

d) 1.0 л чистящего средства с концентрацией изопропанола (C3H7OH ) 9.74 M

e) 325 мл питьевой воды с концентрацией сульфата железа (FeSO4) 1.8·10-6 M

(минимальное количество, которое можно различить на вкус).

14. Найдите молярность следующих растворов:

а) 1.82 кг H2SO4 на литр концентрированной серной кислоты

b) 1.9·10-4 г NaCN на 100 мл крови (минимальная летальная доза цианида).

c) 27 г глюкозы (C6H12O6) в 500 мл раствора для внутривенных инъекций.

d) 2.2 кг формальдегида (CH2O) в 5.5 л формалина для хранения

анатомических препаратов

e) 0.029 г йода в 0.1 л раствора (растворимость I2 в воде при 20˚C).

15. Найдите моляльность следующих растворов:

а) 69 г гидрокарбоната натрия (NaHCO3) в 1 кг воды (насыщенный при 0˚C

раствор).

b) 583 г H2SO4 в 1.5 кг воды (используется в автомобильных аккумуляторах).

c) 120 г NH4NO3 в 250г воды (используется для приготовления охлаждающей

смеси в медицинских «ледяных пакетах»).

d) 0.86 г NaCl в 100г воды (используется при внутривенных инфузиях).

e) 46.85 г кодеина (C18H21NO3) в 125.5 г этанола (C2H5OH).

16. Найдите мольную долю растворенного вещества и растворителя в каждом из растворов упражнения 15.

17. Какая масса концентрированной серной кислоты ( 95% раствор H2SO4 по массе) требуется для приготовления 500 г 10% раствора?

18. Какая масса 3% раствора KOH содержит 5.1 г щелочи?

19. Какая масса HCl содержится в 45.0 мл 37.21% раствора HCl с плотностью 1.19 г/мл?

20. Какая масса твердого NaOH (97.0% NaOH по массе) требуется для приготовления 1.0 л 10% раствора? Плотность 10% раствора равна 1.109 г/см3.

21. Максимально допустимое содержание кадмия (Cd2+) в питьевой воде составляет 0.01мг/л. Какова соответствующая молярная концентрация кадмия?

22. Концентрация глюкозы (C6H12O6) в нормальной спинномозговой жидкости 75 мг/100г. Какова соответствующая моляльная концентрация?

23. Какой объем 0.2 M раствора Li2SO4 содержит 5.7 г сульфата лития?

24. 1.577 M раствор AgNO3 имеет плотность 1.22 г/см3. Найдите моляльность раствора.

25. Какой объем раствора серной кислоты (удельный вес 1.07, содержание H2SO4 10% по массе) содержит 18.5 г чистого вещества при температуре 25˚C? Плотность воды при 25˚C составляет 0.99709 г/мл.

26. 15% раствор K2CrO4 имеет плотность 1.129 г/см3. Найдите молярность раствора.

27. Газообразный раствор содержит 25% H2, 20% CO и 55% CO2 по массе. Какова мольная доля каждого компонента?

28. Образец стекла приготовлен сплавлением 20.0 г оксида кремния, SiO2 и 80.0 г оксида свинца(II), PbO. Найдите мольную долю SiO2 и PbO в стекле.

29. Найдите мольную долю метанола, CH3OH, этанола, C2H5OH, и воды в растворе, содержащем 50% метанола, 30% этанола, 20% воды по массе.

30. Концентрированная соляная кислота содержит 37.0% HCl по массе и имеет удельный вес 1.19 при 25˚C. Плотность воды 0.997 г/мл. Найдите: (a) молярность раствора, (b) моляльность раствора, и (c) мольную долю HCl и H2O.

31. Рассчитайте: (a) процентную концентрацию и (b) моляльность водного раствора сахарозы, C12H22O11, если мольная доля сахарозы 0.0677.

32. Какой объем 10.00 M азотной кислоты, HNO3, требуется для приготовления 1л 0.05 M раствора ?

33. Какой объем серной кислоты с концентрацией 96.0 % по массе и удельным весом 1.84 при 25˚C требуется для приготовления 8.0 л 1.5 M раствора? Плотность воды при 25˚C составляет 0.997 г/мл.

34. Какой объем 0.2 M азотной кислоты, HNO3, можно приготовить из 250 мл 14.5 M раствора?

35. Какой объем 0.75M HBr требуется для приготовления 1.0л 0.33M раствора ?

36. Какой объем 3.5% KOH (плотность 1.012 г/мл) может быть приготовлен из 0.15 л 30.0 % раствора (плотность 1.288 г/мл)?

37. Газообразный водород растворяется в палладии, при этом атомы водорода распределяются между атомами металла. Найдите молярность, моляльность, процентную концентрацию (по массе) водородных атомов в растворе (плотность 10.8 г/см3) при растворении 0.89 г водородных атомов в 215 г металлического палладия.

38. Сколько литров HCl(г) при 25˚C и 1.26 атм. требуется для приготовления 2.5 л 1.5 M раствора HCl ?

39. Найдите процентную концентрацию и моляльность раствора Na2SO4 при растворении 11.5 г кристаллогидрата Na2SO4·10H2O в 0.1 кг воды. Не забудьте учесть кристаллизационную воду.

40. Рассчитайте объем концентрированной кислоты и воды для приготовления 0.525 л 0.105 M азотной кислоты разбавлением 10.0 M раствора. Изменением объема при растворении пренебречь.

41. 0.75 л раствора H3PO4 приготовили из 35.08г P4O10. Найти молярность.

42. 0.25 л раствора карбоната натрия приготовили из 2.032 г кристаллогидрата Na2CO3·10H2O. Найдите молярность этого раствора.

43. 0.05% раствор нитрата серебра (AgNO3) часто используется при лечении хронического гастрита и язвенной болезни желудка. Как приготовить 1л этого раствора из более концентрированного 0.1M AgNO3 ?

44. Как приготовить 800мл 0.1% раствора CaCl2, используя чистое вещество? Используя более концентрированный 0.3M раствор? Плотность не учитывать.

45. Сколько граммов H2SO4 (M=98 г/моль) нужно для приготовления 250мл 0.3N раствора?(Считать, что атомы водорода серной кислоты будут полностью замещены в предстоящей аналитической реакции.) Чему равна молярная концентрация такого раствора?

46. Сколько граммов CaCl2 (M=111 г/моль) нужно для приготовления 150мл 0.4M раствора? Чему равна нормальная концентрация этого раствора?

47. Сколько граммов KF (M=58 г/моль) нужно для приготовления 500мл 2.5M раствора? Чему равна нормальная концентрация этого раствора?

48. Найдите молярную и процентную концентрации, если 20г MgSO4 (M=120 г/моль) использовали для приготовления 200 мл водного раствора с плотностью 1.04 г/мл. Найдите мольную долю воды в таком растворе.

49. Концентрация ионов калия (К+) в сыворотке крови составляет примерно 16мг на 100г. Найдите молярность и процентную концентрацию, если плотность сыворотки 1.025 г/мл.

50. Имеются 3 склянки с серной кислотой (H2SO4): 0.1M, 0.1N, 0.1%. Выбрать наиболее концентрированный раствор.

Тестовые задания

Рекомендуемые страницы:

Источник: https://lektsia.com/1x823.html

Расчет нормальной концентрации

Как определить концентрацию второго раствора...

Нормальная концентрация (эквивалентная) показывает количество эквивалентов растворенного вещества в 1 л раствора.

СN= = . (18)

Количество эквивалентов растворенного вещества определяется:

nЭ в-ва = ® CN =

где nЭ в-ва – число эквивалентов растворенного вещества, г/экв.;

mв-ва – масса растворенного вещества, г;

MЭ в-ва – масса эквивалента растворенного вещества, г/экв;

uр-ра – объем раствора, л.

Рассчитаем массу эквивалента К2СО3. Масса 1 моля К2СО3 равна:

Масса моль – эквивалента К2СО3:

где В – суммарная валентность катиона или аниона соли и для К2СО3 равна 2.

Вычислим количество грамм-эквивалентов К2СО3 в растворе:

n = .

Определим объем полученного раствора по формуле:

u= ,

где m – масса раствора, г;

u — объем раствора, мл;

r — плотность раствора, г/см3.

u

По определению найдем нормальную концентрацию раствора:

СN = .

Расчет молярной концентрации

Молярная концентрация определяется количеством молей растворенного вещества, содержащихся в 1 л раствора. Количество молей растворенного вещества равно:

nв-ва =

следовательно, молярная концентрация раствора:

, (19)

где n – количество молей растворенного вещества, моль;

mв-ва — масса растворенного вещества, г;

Mв-ва — молекулярная масса растворенного вещества, г/моль;

uр-ра — объем раствора, л.

Зная процентную концентрацию и плотность (r) полученного раствора, можно определить молярную концентрацию этого раствора.

Масса 1л раствора К2СО3:

mр-ра = uр-ра × r = 1000 см3×1,02 г/см3 = 1020 г.

Теперь определим массу растворенного К2/sub>СО3 в 1 л раствора:

m = mр-ра ×w ,

где w = — массовая доля растворенного вещества, равная отношению массы растворенного вещества к массе всего раствора:

w = .

Отсюда m = 1020 г × 0,0196 =19,99 г.

Находим молярную концентрацию раствора, т.е. количество молей К2СО3 в 1 л раствора:

СМ=

Расчет моляльной концентрации раствора

Моляльность раствора (Сm) показывает количество молей растворенного вещества, содержащихся в 1000 г растворителя:

Сm= ;

т.к. nM = ,

где nM — количество молей растворенного вещества;

mв-ва – масса растворенного вещества, г;

Mв-ва – молярная масса растворенного вещества, г/моль;

mр-ля – масса растворителя, кг,

то Сm = . (20)

Найдем массу К2СО3, растворенного в 1 кг растворителя (Н2О). Для этого определим массовую долю растворителя wр-ля:

w = .

Масса К2СО3 в одном кг растворителя:

.

Пример 2. Вычислите массовые доли веществ в растворе, полученном при сливании 100 мл 10%-го раствора СаСl2 (r1= 1,083 г/мл) и 150 мл 4%-го раствора Nа3РО4(r2 = 1,04 г/мл) после отделения образовавшегося осадка.

Решение. Запишем уравнение реакции, протекающей при сливании данных растворов:

3СаСl2 + 2Nа3РО4 = 6NаСl + Cа3 (РО4)2¯.

Эта реакция необратима, т.к. Cа3(РО4)2 выпадает в осадок.

Разобьем решение задачи на следующие этапы:

1) Вычислим массы растворов и растворенных веществ.

Раствор СаСl2: m1 (р-ра) = r1× u1 = 1,083 × 100 = 108,3 г.

Раствор Nа3РО4: m2 (р-ра) = r2 × u2 = 1,04 × 150 = 156 г.

mCаСl = m1 × w1 = 108,3 × 0,1 = 10,83 г,

т.к.× w1 = ;

mNа РО = m2 × w2 = 156 × 0,04 = 6,24 г,

т.к.× w2 =

2) Находим количество вещества СаСl2 и Nа3РО4::

nCаСl = ;

n = .

3) Из уравнения реакции видим, что вещества реагируют в соотношении 3:2 и из расчета по этапу 2) очевидно, что СаСl2 находится в избытке, а Nа3РО4 прореагирует полностью.

4) Находим массы образовавшихся веществ, т.к. количество образовавшегося фосфата кальция в 2 раза меньше количества молей Nа3РО4, вступившего в реакцию:

n = ,

m 0,01904×310,2 = 5,906 г;

nNаСl = 3n( ) = 0,1142 моль;

mNаСl = n×M = 0,1142 × 58,44 = 6,674 г.

5) Находим массу остатка СаСl2; прореагировало СаСl2:

n3 = 3/2 n( ) = 0,05711 моль;

m1(CаСl ) = n3×MCаСl = 6,339 г;

mостатка = 10,83 — 6,339 = 4,491 г.

6) Вычислим массу образовавшегося раствора:

m3(р-ра) = m1(р-ра)+m2(р-ра) – m = 108,3 + 156 – 5,906 = 258,39 г.

7) Вычислим массовые доли солей в растворе:

w NаСl = .

Пример 3. На нейтрализацию 50 см3 раствора НСl израсходовано 25 см3 0,5 н раствора едкого натра. Чему равна нормальность кислоты?

Решение. Как видно из уравнения, растворы взаимодействуют в эквивалентных количествах:

НСl + NаОН = NаСl + Н2О.

При разных нормальностях растворы реагирующих веществ взаимодействуют между собой в объемах, обратно пропорциональных их нормальностям:

или С1×V1 = C2×V2 , (21)

где С1, С2 – нормальные концентрации НСl и NаОН соответственно,

V1, V2 – объемы растворов НСl и NаОН.

С1×50 = 25×0,5; С1 = .

ЗАДАЧИ

101. К 1 л 10%-го раствора КОН (r = 1,092 г/мл) прибавили 0,5 л 5%-го раствора КОН (r = 1,045 г/мл). Объем смеси довели до 2 л. Вычислите молярную концентрацию полученного раствора.

Ответ: 1,2 М.

102. Сколько и какого вещества останется в избытке, если к 75 см3 0,3 н раствора Н2SO4 прибавить 125 см3 0,2 н раствора КОН .

Ответ: 0,14 г КОН.

103. Для осаждения в виде АgCl всего серебра, содержащегося в 100 см3 раствора АgNО3, потребовалось 50 см3 0,2 н раствора НСl. Чему равна нормальность раствора АgNO3.Сколько граммов АgCl выпало в осадок?

Ответ: 0,1 н; 1,433 г.

104. Какой объем 0,3 н раствора НСl требуется для нейтрализации раствора, содержащего 0,32 г NаОН в 40 см3?

Ответ: 26,6 см3.

105. На нейтрализацию 31 см3 0,16 н раствора щелочи потребуется 217 см3 раствора Н2SO4. Чему равна нормальность раствора кислоты?

Ответ: 0,023 н.

106. Сколько граммов НNO3 содержалось в растворе, если на его нейтрализацию потребовалось 35 см3 0,4 н раствора NаОН?

Ответ: 0,882 г.

107. Определите объем раствора 1,2 М NаОН, который потребуется для полного осаждения железа в виде гидроксида из раствора FеСl3 с массой 300 г с массовой долей соли в нем 12%.

Ответ: 554 мл.

108. 1 л 0,5 М раствора едкого натра смешали с 1 л 0,4 н раствора серной кислоты. Сколько молей и какого вещества осталось в избытке?

Ответ: 0,1 моль NаОН.

109. На нейтрализацию 10 мл раствора едкого натра пошло 6 мл 0,5 н раствора НСl. Вычислите нормальность раствора щелочи.

Ответ: 0,3 н.

110. Сколько миллилитров 2 н раствора Nа2СО3 надо прибавить к 50 мл 1,5 н раствора ВаСl2, чтобы полностью осадить барий в виде ВаСО3?

Ответ: 37,5 мл.

111. Смешивают раствор едкого натра, содержащий 8 г NаОН в 1 л, с раствором соляной кислоты, содержащим 24 г НСl в 1 л. В каком объемном соотношении нужно взять растворы, чтобы произошла полная нейтрализация.

Ответ: 3,3 объёма NаОН на 1 объём НСl?

112. Вычислить молярность 20%-го раствора НСl плотностью 1,10 г/мл

Ответ: 6,03 М НСl.

113. Какой объем 20,01%-го раствора НСl (r = 1,100 г/мл) требуется для приготовления 1 л 10,17%-го раствора (r= 1,050 г/мл)?

Ответ: 485,38 см3.

114. Какой объем 50 %-го раствора КОН (r = 1,538 г/мл) требуется для приготовления 3 л 6%-го раствора плотностью 1,048 г/мл?

Ответ: 245,5 мл.

115. Смешали 10 см3 10%-го раствора НNО3 (r = 1,056 г/мл) и 100 см3 30%-го раствора НNО3 (r = 1,184 г/мл). Вычислите процентную концентрацию полученного раствора.

Ответ: 28,38%.

116. Определите массу осадка, который образуется при смешении раствора с массовой долей хлорида бария 5% и раствора с массовой долей сульфата натрия 8% . Масса раствора ВаСl2 равна 15 г, раствора Nа2SO4- 10 г.

Ответ: mВаSO = 0,84 г.

117. Какое количество вещества нитрата натрия содержится в растворе объемом 1 л с массой долей NаNO3 40%, плотность которого 1,32 г/мл?

Ответ: 6,2 моль.

118. Определите массовую долю хлорида кальция в растворе 1,4 М СаСl2, плотность которого равна 1,12 г/мл.

Ответ: 0,139.

119. Какой объем раствора с массовой долей карбоната натрия 0,15 (r= 1,16 г/мл) надо взять для приготовления раствора 0,45 М Nа2СО3 объемом 120 мл?

Ответ: 32,9 мл.

120. К 3л 10 %-го раствора НNO3 плотностью 1,054 г/мл прибавили 5 л 2%-го раствора той же кислоты плотностью 1,009 г/мл. Вычислите процентную и молярную концентрации полученного раствора, объем которого равен 8 л.

Ответ: 5,0%, 0,82 М.

Растворы электролитов

Электролитами называются вещества, которые при растворении в воде диcсоциируют (распадаются) на ионы и проводят электрический ток. Неорганические кислоты, основания и соли являются электролитами.

Сила электролита характеризуется степенью диссоциации (a), которая показывает отношение числа молекул, продиссоциированных на ионы (Nд), к общему числу молекул электролита в растворе (Nо), и выражается в процентах:

a = 100%. (22)

Условно считают электролиты, диссоциированные на 3% и менее (т.е. a £ 3%) – слабыми, а на 30% и более (a ³ 30%) – сильными.

В растворе слабого электролита устанавливается равновесие между недиссоциированными молекулами и продуктами их распада – ионами. Например, в растворе уксусной кислоты:

СН3СООН « СН3СОО- + Н+

Константа такого равновесия выражается через концентрации соответствующих частиц в растворе и называется константой диссоциации КД.:

Кд = (23)

Многоосновные кислоты диссоциируют по ступеням, каждая из которых характеризуется своей константой. Например:

Н3ВО3 «Н+ + Н2ВО К1

Н2ВО « Н+ + НВО К2

НВО « Н+ + ВО К3

Согласно закону разбавления Оствальда, Кд и a связаны уравнением

Кд = (24)

где Сэл – молярная концентрация электролита, моль/л.

При a> Сон -, при рН = 7- среда нейтральная и Сн = Сон -, при рН >7 – щелочная среда , т.к.

Сн4,03×10-41,62×10-7Аg2СО31,15×10-46,15×10-12ВаСО38,40×10-57,05×10-9Аg2SО42,68×10-27,70×10-5Вi(IО3)32,80×10-41,66×10-13

135-139. Выпадет ли осадок при сливании равных объемов растворов 1 и 2 с концентрацией С, моль/л? Напишите уравнения реакций.

№ задачиРастворыОсадкиПР
С1С2
СаСl20,02Nа2SО40,02СаSО41,0×10-5
LаСl30,02NаОН0,03Lа(ОН)35×10-21
Sr(NО3)20,002К2SО40,002SrSO43,6×10-7
СuSO40,01(NН4)2S0,02СuS4×10-38
АgNO30,02Н2SO4Аg2SO42×10-5

140. Вычислите концентрацию [Н+] в растворах, в которых концентрация [ОН-] – ионов (в моль/л) составляет:

а) 10-4 , б) 3,2×10-6 , в) 7,4×10-11.

Ответы: а) 10-10моль/л, б) 3,12×10-9 моль/л, в) 1,35×10-4моль/л.

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ

Окислительно-восстановительными реакциями называются реакции, в результате которых изменяются степени окисления элементов.

Степени окисления определяются числом электронов, передаваемых от атома с меньшей электроотрицательностью к атому с большей электроотрицательностью. Например, в молекуле NаСl менее электроотрицательным является атом натрия, более электроотрицательным – атом Сl, поэтому электроны смещаются в сторону атома хлора. Натрий приобретает степень окисления +1, а хлор -1.

Процесс присоединения электронов частицами (атомами, ионами, молекулами) называется их восстановлением, а вещество, содержащее такую частицу, является окислителем.

Процесс отдачи электронов – окисление, а вещество – восстановитель. Следует также учесть, что если атомы окислителя и восстановителя содержатся в одной и той же молекуле, то реакция называется реакцией внутримолекулярного окисления – восстановления. Например:

2КСlО3 = 2 КCl +3О2­

Если же в таких реакциях окислителем и восстановителем являются атомы одного и того же элемента, то окислительно-восстановительный процесс называется диспропорционированием. Например, в реакции:

3К2МnО4 + 2Н2О = 2КМnО4 + МnО2 + 4КОН

Mn+6 диспропорционирует в Mn+7 и в Мn+4.

Имеют место и реакции обратного диспропорционирования, в которых атомы, находящиеся в различных степенях окисления, приобретают одинаковую окисленность (степень окисления), например:

NH4NO3 = N2О­ + 2H2O

где N-3, окисляясь, а N+5 , восстанавливаясь, переходят в N+1.

Типичными окислителями являются : F2, О2, Сl2, перманганат-ион MnО , дихромат-ион Cr2O , диоксид свинца РbО2. Типичными восстановителями являются: активные металлы (К, Nа, Са), углерод (С), сульфид-ион (S-2), иодид-ион (I–), сульфит-ион (SO ), Fе2+, Sn2+ и др.

В простых веществах О2, Cl2, Н2, N2 и др. оба атома имеют одинаковую электроотрицательность. При образовании из этих атомов молекул смещения электронов не происходит, поэтому степень окисления в простых веществах равна нулю. Некоторые простые вещества, например Fе, S, С и другие могут иметь разную степень окисления.

Так, железо может иметь степень окисления +2 и +3, медь – +1 и +2, сера – +2, +4, +6. Кислород, как правило, имеет степень окисления –2, но в пероксидах его степень окисления равна (–1), во фторидах (+2).

Постоянную степень окисления имеют щелочные металлы (+1), элементы II группы – (+2), алюминий – (+3), галоген-ионы – (-1).

В зависимости от того, к какому атому больше смещена электронная пара, говорят о положительной или отрицательной степени окисления.

Степень окисления элемента, ближе к которому смещена электронная пара, является отрицательной, тогда как степень окисления другого атома в молекуле – положительна. Например, в молекуле воды электронная пара смещена в сторону атома кислорода.

Следовательно, атом кислорода проявляет отрицательную степень окисления, а атомы водорода положительную.

В связи с тем что молекула в целом электронейтральна, то количество всех отрицательных единиц степени окисления должно быть равно количеству положительных единиц.

Положительная степень окисления, как правило, присуща тем элементам, которые на внешнем энергетическом уровне имеют 1, 2, 3 электрона, и, чтобы создать устойчивую 8-электронную оболочку, им легче отдать эти электроны, чем присоединить 7, 6, 5 электронов соответственно. Поэтому эти атомы будут отталкивать электроны.

Отрицательную по знаку степень окисления, как правило, будут иметь те элементы, у которых на внешнем энергетическом уровне 5, 6, 7 электронов, и для создания 8-электронного энергетического уровня им легче принять недостающие, чем отдать 5, 6, 7 электронов. Эти атомы будут притягивать электроны.

Знание знака и величины степени окисления атомов с постоянным значением позволяет вычислить степени окисления других атомов в сложных соединениях.

Пример 1. Определить степень окисления серы в серной кислоте Н2SO4.

Решение. Для определения степени окисления серы в серной кислоте вспомним, что атом кислорода имеет степень окисления (-2), а атом водорода (+1). В целом молекула любого вещества электронейтральна, следовательно, 2×(+1) + х + (-2)×4 = 0. Отсюда сера в серной кислоте имеет степень окисления +6.

Пример 2. Определить степень окисления марганца в перманганате калия КМnO4.

Решение. Степень окисления кислорода –2, калия +1. Молекула КМnO4 электронейтральна, следовательно: (+1)×1 + х + 4×(-2)=0.

Степень окисления марганца в перманганате калия равна +7.

Подбор коэффициентов в окислительно-восстановительных реакциях

При подборе коэффициентов в уравнениях окислительно-восстановительных реакций пользуются двумя методами: электронного баланса и ионно-электронного баланса. Остановимся на первом.

Для успешной расстановки коэффициентов в окислительно-восстановительных уравнениях важно соблюдать следующую последовательность:

1. Записать уравнение реакции, отметить элементы, изменяющие в результате реакции свои степени окисления, найти окислитель и восстановитель.

2. Составить схемы полуреакций окисления и восстановления с указанием исходных и образующихся частиц.

3. Уравнять число частиц каждого элемента в левой и правой частях полуреакций.

4. Уравнять суммарное число зарядов в левой и правой частях каждой полуреакции; для этого прибавить или отнять в левой части полуреакций необходимое число электронов.

5. Подобрать множители для полуреакций так, чтобы число электронов, отдаваемых при окислении, было равно числу электронов, принимаемых при восстановлении.

6. Сложить уравнения полуреакций с учетом найденных коэффициентов.

7. Расставить коэффициенты в уравнении реакции и проверить правильность расстановки. Число частиц каждого элемента в правой части уравнения должно быть равно числу частиц в левой части.

Рассмотрим применение метода электронного баланса в окислительно-восстановительных реакциях на нескольких примерах.

Пример 3.

К2

Решение. Определим степень окисления всех элементов и установим, у каких из них она меняется. В молекуле К2Сr2O7 ионы кислорода имеют суммарный электрический заряд, равный (–2)×7 = -14. Молекула электронейтральна. Заряд двух ионов калия равен +2, а два иона хрома имеют заряд +12, следовательно, на долю одного иона хрома приходится +6 зарядов.

В правой части уравнения в молекуле Сr2(SO4)3 хром связан с кислотным остатком серной кислоты, имеющим заряд –2. Молекула электронейтральна, следовательно, два иона хрома должны быть связаны с тремя SО – ионами. Рассуждая таким же образом, приходим к выводу, что степень окисления серы в сульфите натрия Nа2SO3 равна +4, а в сульфате натрия Nа2SO4 +6.

Составим электронные уравнения и приводим к балансу количество отданных и принятых электронов (окислителя и восстановителя). С учетом коэффициентов складываем ионы левых и правых частей полуреакций.

2Сr+6 + 6? ® 2Сr+3 2 1 восстановление, окислитель

S+4 — 2? ® S+6 6 3 окисление, восстановитель

2Сr+6 + 3S+4 ® 2Cr+3 + 3S+6

Полученные коэффициенты переносим в молекулярное уравнение, причем коэффициент для хрома не удваиваем, чтобы сохранить его баланс в левой и правой частях уравнения.

Приводим к балансу ионы калия и натрия.

Подсчитываем количество кислотных остатков справа и вычитаем три кислотных остатка в составе Nа2SO3, участвующих в окислении. Разница в коэффициентах дает коэффициент для кислоты.

Уравниваем водород в составе молекулы воды.

Проверку правильности расстановки коэффициентов проводим по количеству атомов кислорода. В левой и правой частях уравнения оно равно 32.

Окончательное уравнение реакции: К2Сr .

Пример 4.

Решение. Определяем степень окисления всех элементов и устанавливаем, что они меняются у марганца и хлора.

Составляем электронные уравнения и приводим к балансу ионы окислителя и восстановителя. С учетом коэффициентов складываем ионы левой и правой частей уравнений:

6 3 окисление, восстановитель

Сl+5 + 6? ®Сl- 3 1 восстановление, окислитель

3Мn+4 + Cl+5 ® 3Мn+7 + Cl–

Коэффициенты краткого уравнения переносим в молекулярное уравнение, затем приводим к балансу коэффициенты других ионов.

Проверку правильности расстановки коэффициентов проводим по кислороду. В левой и правой части уравнения количество атомов кислорода равно 15.

3 МnO2 + КСlO3 + 6КОН ® 3К2МnO4 + КСl + 3Н2О

ЗАДАЧИ

Расставьте коэффициенты в уравнениях окислительно-восстановительных реакций. Укажите окислитель и восстановитель.

141. МnSO4 + КМnO4 + Н2О ® МnO2 + К2SO4 + Н2SO4

142. FеSO4 + КClO3 + Н2SO4 ® Fе2(SO4)3 + КСl + Н2О

143. КIО3 + КI + Н2SO4 ® I2 + К2SO4 + Н2О

144. I2 + Сl2 + Н2О ® НIО3 + НСl

145. NаСrO2 + Вr2 + NаОН ® Nа2СrO4 + NаВr + Н2О

146. Р + НClO3 + Н2О ® Н3РО4 + НСl

147. РbS + НNO3 ® S + Рb(NO3)2 + NO + Н2О

148. КВr + РbО2 + НNO3 ® Рb(NO3)2 + Вr2 + КNO3 +Н2О

149. Sb2O3 + НВrO3 ® Sb2O5 + НВr

150. Сr2O3 + КNО3 + КОН ® К2СrO4 + КNO2 + Н2О

151. Н2S + Cl2 + Н2О ® Н2SO4 + НСl

152. Nа2МnO4 + NаNO2 + Н2О ® МnO2 + NаNO3 + NаОН

153. КМnО4 + НСl ® МnСl2 + КCl + Сl2 + Н2O

154. Н2SO3 + К2Сr2О7 + Н2SO4 ® Cr2 (SO4)3 + К2SO4 + Н2О

155. FеSO4 + КМnO4 + Н2SO4 ® Fе2(SO4)3 + МnSO4 + Н2О + К2SO4

156. NаBr + MnO2 + Н2SO4 ® МnSO4 + Nа2SO4 + Br2 + Н2О

157. Мg + Н2SO4 ® МgSO4+ S+ Н2О

158. Н2SO3 + Cl2 + Н2О ® Н2SO4 + НСl

159. Н2S + НNO3 ® S + NO2 + Н2О

160. КNО3 + КI + Н2SO4 ® NO + I2 + К2SO4+ Н2О

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/4_163989_raschet-normalnoy-kontsentratsii.html

Урок 15. Моляльность и молярность – HIMI4KA

Как определить концентрацию второго раствора...
Архив уроков › Основные законы химии

В уроке 15 «Моляльность и молярность» из курса «Химия для чайников» рассмотрим понятия растворитель и растворенное вещество научимся выполнять расчет молярной и моляльной концентрации, а также разбавлять растворы. Невозможно объяснить что такое моляльность и молярность, если вы не знакомы с понятием моль вещества, поэтому не поленитесь и прочитайте предыдущие уроки. Кстати, в прошлом уроке мы разбирали задачи на выход реакции, посмотрите если вам интересно.

Химикам нередко приходится работать с жидкими растворами, так как это благоприятная среда для протекания химических реакций. Жидкости легко смешивать, в отличие от кристаллических тел, а также жидкость занимает меньший объем, по сравнению с газом.

Благодаря этим достоинствам, химические реакции могут осуществляться гораздо быстрее, так как исходные реагенты в жидкой среде часто сближаются и сталкиваются друг с другом.

В прошлых уроках мы отмечали, что вода относится к полярным жидкостям, и потому является неплохим растворителем для проведения химических реакций.

Молекулы H2O, а также ионы H+ и OH—, на которых вода диссоциирована в небольшой степени, могут способствовать запуску химические реакций, благодаря поляризации связей в других молекулах или ослаблению связи между атомами. Вот почему жизнь на Земле зародилась не на суше или в атмосфере, а именно в воде.

Растворитель и растворенное вещество

Раствор может быть образован путем растворения газа в жидкости или твердого тела в жидкости.

В обоих случаях жидкость является растворителем, а другой компонент — растворенное вещество.

Когда раствор образован путем смешивания двух жидкостей, растворителем считается та жидкость, которая находится в большем количестве, иначе говоря имеет бОльшую концентрацию.

Молярная концентрация

Концентрацию можно выражать по разному, но наиболее распространенный способ — указание его молярностиМолярная концентрация (молярность) — это число молей растворенного вещества в 1 литре раствора.

Единица молярности обозначается символом M. Например два моля соляной кислоты на 1 литр раствора обозначается 2 М HCl. Кстати, если на 1 литр раствора приходится 1 моль растворенного вещества, тогда раствор называется одномолярным.

Молярная концентрация раствора обозначается различными символами:

  • cx, Смx, [x], где x — растворенное вещество

Формула для вычисления молярной концентрации (молярности):

где n — количество растворенного вещества в молях, V — объем раствора в литрах.

Пару слов о технике приготовления растворов нужной молярности. Очевидно, что если добавить к одному литру растворителя 1 моль вещества, общий объем раствора будет чуть больше одного литра, и потому будет ошибкой считать полученный раствор одномолярным.

Чтобы этого избежать, первым делом добавляем вещество, а только потом доливаем воду, пока суммарный объем раствора не будет равным 1 л.

Полезно будет запомнить приближенное правило аддитивности объемов, которое гласит, что объем раствора приближенно равен сумме объемов растворителя и растворенного вещества. Растворы многих солей приближенно подчиняются данному правилу.

Пример 1. Химичка дала задание растворить в литре воды 264 г сульфата аммония (NH4)2SO4, а затем вычислить молярность полученного раствора и его объем, основываясь на предположении об аддитивности объемов. Плотность сульфата аммония равна 1,76 г/мл.

Решение:

Определим объем (NH4)2SO4 до растворения:

  • 264 г / 1,76 г/мл = 150 мл = 0,150 л

Пользуясь правилом аддитивности объемов, найдем окончательный объем раствора:

  • 1,000 л + 0,150 л = 1,150 л

Число молей растворенного сульфата аммония равно:

  • 264 г / 132 г/моль = 2,00 моля (NH4)2SO4

Завершающий шаг! Молярность раствора равна:

  • 2,000 / 1,150 л = 1,74 моль/л, т.е 1,74 М (NH4)2SO4

Приближенным правилом аддитивности объемов можно пользоваться только для грубой предварительной оценки молярности раствора. Например, в примере 1, объем полученного раствора на самом деле имеет молярную концентрацию равную 1,8 М, т.е погрешность наших расчетов составляет 3,3%.

Моляльная концентрация

Наряду с молярностью, химики используют моляльность, или моляльную концентрацию, в основе которой учитывается количество использованного растворителя, а не количество образующегося раствора.

Моляльная концентрация — это число молей растворенного вещества в 1 кг растворителя (а не раствора!). Моляльность выражается в моль/кг и обозначается маленькой буквой m.

Формула для вычисления моляльной концентрации:

где n — количество растворенного вещества в молях, m — масса растворителя в кг

Для справки отметим, что 1 л воды = 1 кг воды, и еще, 1 г/мл = 1 кг/л.

Пример 2. Химичка попросила определить моляльность раствора, полученного при растворении 5 г уксусной кислоты C2H4O2 в 1 л этанола. Плотность этанола равна 0,789 г/мл.

Решение:

Число молей уксусной кислоты в 5 г равно:

  • 5,00 г / 60,05 г/моль = 0,833 моля C2H4O2

Масса 1 л этанола равна:

  • 1,000 л × 0,789 кг/л = 0,789 кг этанола

Последний этап. Найдем моляльность полученного раствора:

  • 0,833 моля / 0,789 кг растворителя = 0,106 моль/кг

Единица моляльности обозначается Мл, поэтому ответ также можно записать 0,106 Мл.

Разбавление растворов

В химической практике часто занимаются разбавлением растворов, т.е добавлением растворителя. Просто нужно запомнить, что число молей растворенного вещества при разбавлении раствора остается неизменным. И еще запомните формулу правильного разбавления раствора:

  • Число молей растворенного вещества = c1V1 = c2V2

где с1 и V1 — молярная концентрация и объем раствора до разбавления, с2 и V2 — молярная концентрация и объем раствора после разбавления. Рассмотрите задачи на разбавление растворов:

Пример 3. Определите молярность раствора, полученного разбавлением 175 мл 2,00 М раствора до 1,00 л.

Решение:

В условие задача указаны значения с1, V1 и V2, поэтому пользуясь формулой разбавления растворов, выразим молярную концентрацию полученного раствора с2

  • с2 = c1V1 / V2 = (2,00 М × 175 мл) / 1000 мл = 0,350 М

Пример 4 самостоятельно. До какого объема следует разбавить 5,00 мл 6,00 М раствора HCl, чтобы его молярность стала 0,1 М?

Ответ: V2 = 300 мл

Без сомнения, вы и сами догадались, что урок 15 «Моляльность и молярность» очень важный, ведь 90% все лабораторных по химии связаны с приготовлением растворов нужной концентрации. Поэтому проштудируйте материал от корки до корки. Если у вас возникли вопросы, пишите их в комментарии.

Источник: https://himi4ka.ru/arhiv-urokov/urok-15-moljalnost-i-moljarnost.html

Biz-books
Добавить комментарий