Как найти значение задерживающей разности потенциалов…

Разность потенциалов

Как найти значение задерживающей разности потенциалов...

Поскольку электрический ток является упорядоченным движением заряженных частиц, то для определения величины тока необходимо знать, как величину энергии частиц, так и силу стороннего воздействия на них.

Сущность понятия потенциальной разницы

Для изучения свойств заряженных частиц, помещенных в электростатическое поле, введено понятие потенциала. Оно означает отношение энергии заряда, помещенного в электростатическое поле, к его величине.

При переносе заряженной частицы в другую точку поля меняется его потенциальная энергия, а величина заряда остается неизменной. Для переноса требуется затратить некоторое количество энергии. Данная энергия по переносу единицы заряда получила название электрического напряжения. Соответственно, больший запас энергии будет ускорять перенос, то есть, чем больше напряжение, тем больше ток в цепи.

В данном случае разность потенциалов – это численное равенство напряжению между точками нахождения единичного заряда. Для общего случая здесь должна добавляться работа сторонних сил, которая называется электродвижущей силой (ЭДС). По своей сути, электричество – это работа стороннего источника (генератора) по поддержанию в электросхеме заданных уровней напряжения и тока.

Единица разности потенциалов

Что такое потенциал в электричестве

В честь ученого (Алессандро Вольта), впервые доказавшего существование разницы потенциалов, единица измерения названа Вольт. В международной системе единиц напряжение обозначается символами:

  • В – в русскоязычной литературе;
  • V – в англоязычной литературе.

Кроме этого, существуют кратные обозначения:

  • мВ – милливольт (0.001 В);
  • кВ – киловольт (1000 В);
  • МВ – мегавольт (1000 кВ).

Поток вектора магнитной индукции

Электростатическое поле характеризуется напряженностью, которая вместе с вектором электромагнитной индукции составляет электромагнитное поле.

Если заряженная частица движется в электромагнитном поле, то полную силу, которая воздействует на частицу, определяют по закону Лоренца:

F=q∙E+q∙vхB,

где:

  • q – величина заряда;
  • v – скорость движения;
  • E – величина электрического поля;
  • В – вектор магнитной индукции.

Обратите внимание! В указанной формуле приведены векторные величины. Крестом обозначено векторное произведение.

Силу F воздействия на частицу принято называть силой Лоренца.

Поток вектора магнитной индукции

Данная формула является наиболее общей и может использоваться для вычисления при условии точечного заряда (в том числе единичного).

Теорема Гаусса для магнитного поля

Электрическое поле — что это такое, понятие в физике

Теорема Гаусса является одной из самых основных в электродинамике законов. Существуют теоремы Гаусса для электрического и магнитного полей, которые входят в состав уравнений Максвелла.

При помощи данного закона устанавливается связь между напряженностью электрического поля и заряда в случае произвольной поверхности. Теорема (закон) Гаусса гласит, что в произвольной замкнутой поверхности поток вектора электрического поля пропорционален заряду, заключенному внутри поверхности.

Для магнитного поля теорема Гаусса говорит о том, что поток вектора магнитной индукции через произвольную замкнутую поверхность равен нулю.

Выражение для потенциала поля точечного заряда

Поскольку потенциал равен интегралу от напряженности поля, то можно подставить под знак интеграла выражение для напряженности поля единичного заряда. После интегрирования и преобразования выражение для поля точечного заряда принимает вид:

ϕ=q/(4∙π∙ε0∙ε∙r),

где:

  • ε0 – электрическая постоянная;
  • r – расстояние.

Приведенное выражение свидетельствует, что величина энергии растет пропорционально степени заряженности и падает пропорционально расстоянию.

Проводники в электростатическом поле

Размещение проводника в электростатическом поле приводит к тому, что поле начнет действовать на носители заряда внутри проводящего предмета. Носители начинают перемещаться до тех пор, пока электростатическое поле вне поверхности ни обратится в нуль.

Поскольку поле внутри вещества отсутствует, то во всех точках проводящего материала энергия будет постоянной, а поверхность эквипотенциальной. Векторы напряженности поля направлены под прямым углом в любой точке поверхности проводника.

Проводник в электростатическом поле

Под действием поля заряды внутри проводника отсутствуют, поскольку они сосредоточены исключительно на поверхности. Этот факт используется при экранировке – защите тел от влияния внешних электромагнитных и электростатических полей. Для экранирования может использоваться не только сплошной проводящий материал, но и сетка, так называемая «клетка Фарадея».

Также свойство перемещения заряженных частиц (электронов) используется в электростатических генераторах для получения напряжения в несколько миллионов вольт.

Электроемкость уединенного проводника

Для связи величин заряда и напряжения введено понятие электрической емкости. Для уединенного проводника (такого, на который отсутствует влияние других заряженных тел) значение емкости – величина постоянная и равная отношению количества заряда к потенциалу. Другими словами, емкость показывает, какой заряд нужно сообщить проводнику, чтобы его потенциальная энергия увеличилась на единицу.

Электроемкость не зависит от степени заряженности. Роль играют только:

  • форма;
  • геометрические размеры;
  • диэлектрические свойства среды.

Так же, как и емкость электрического конденсатора, электроемкость проводника будет обозначаться в фарадах.

Обратите внимание! На практике электроемкость проводника составляет очень малую величину. Для увеличения значения, особенно при производстве конденсаторов, как элементов с нормированным значением емкости, разработаны особые технологии.

Падение потенциала вдоль проводника

На концах проводника, помещенного в электрическое поле, начинает наблюдаться разность потенциалов. Вследствие этого электроны начинают перемещаться в сторону увеличения разности. В проводнике возникает электрический ток.

Свободные электроны продвигаются вдоль проводника до тех пор, пока разница ни будет равна нулю. На практике для поддержания заданной величины тока цепи запитываются от источников напряжения или тока.

Разница заключается в следующем:

  • Источник тока поддерживает в цепи постоянный ток вне зависимости от сопротивления нагрузки;
  • Источник напряжения поддерживает на своих зажимах строго постоянную ЭДС, независимо от величины потребляемого тока.

Разница потенциалов (падение напряжения) пропорциональна расстоянию от концов проводника, то есть обладает линейной зависимостью.

Опыт Вольта

Первым доказал существование разности потенциалов Алессандро Вольта. Для опытов были взяты два диска, выполненных из меди и цинка и насаженных на стержень электроскопа. При соприкосновении меди и цинка листочки электроскопа расходятся, свидетельствуя о наличии электрического заряда.

На основании своих опытов ученый изготовил первый источник электрического напряжения – вольтов столб.

Измерение контактной разности потенциалов

Основная проблема заключатся в том, что контактная разность потенциалов не может быть измерена напрямую, вольтметром, хотя значение ЭДС в цепи с соединением двух различных проводников может составлять от долей до единиц вольт.

Контактная потенциальная разница существенно влияет на вольтамперную характеристику измеряемой цепи. Наглядным примером может служить полупроводниковый диод, где подобное явление возникает на границе соприкосновения полупроводников с разным типом проводимости.

Разность потенциалов на практике

С общепринятой точки зрения, разность потенциалов – это напряжение между двумя выбранными точками цепи. В то же время напряжение между каждой из этих точек и третьей точкой будет отличаться в полном соответствии с определением.

Наглядный пример:

  • Точка А в электрической схеме – напряжение 10 В относительно провода заземления;
  • В точке В напряжение составляет 25 В относительно того же провода.

Необходимо найти напряжение между точками А и В.

В данном случае искомая разность составляет:

UAB= ϕА-ϕВ=10-25=15 В.

Рассматриваемые понятия важны для минимального объема знаний в области электротехники и электроники, поскольку на них основываются все расчеты и практические решения. Без этих азов невозможно более углубленное изучение электрических дисциплин.

Источник: https://amperof.ru/teoriya/raznost-potencialov.html

Большая Энциклопедия Нефти и Газа

Как найти значение задерживающей разности потенциалов...

Cтраница 1

Задерживающая разность потенциалов, при которой прекращается фототек, в обоих случаях одна и та же.

Эта разность потенциалов определяет максимальную энергию фотоэлектронов, равную разности между энергией фотона Рё работой выхода; следовательно, частота излучения РѕР±РѕРёС… источников одинакова. Р�сточники отличаются только РїРѕ интенсивности излучения.  [1]

РџСЂРё задерживающей разности потенциалов 10 Р’ ток через электронную трубку становится равным нулю. Чему равна энергия Р• падающего света.  [2]

Значения задерживающей разности потенциалов, необходимые для построения графика упомянутой функции, можно получить, построив СЂСЏРґ вольтамперных характеристик.  [3]

РџРѕРґР±РѕСЂРѕРј определенной задерживающей разности потенциалов запирают фототек.  [4]

РџСЂРё некотором минимальном значении задерживающей разности потенциалов фототек СЃ поверхности лития, освещаемого светом СЃ длиной волны РҐ0, прекращается. Р�зменив длину волны света РІ Рї 1 5 раза, установили, что для прекращения фототока достаточно увеличить задерживающую разность потенциалов РІ k 2 раза.  [5]

РќР° СЂРёСЃ.

242 представлены зависимости задерживающей разности потенциалов РѕС‚ частоты облучающего света для РґРІСѓС… различных материалов катода фотоэлемента. Какой РёР· материалов имеет меньшую работу выхода. Чему равен тангенс угла наклона линии графика.  [6]

Между электродами фотоэлемента предыдущей задачи приложена задерживающая разность потенциалов РІ 1 РІ.  [7]

Между фотокатодом Рё анодом приложена такая задерживающая разность потенциалов, что наиболее быстрые фотоэлектроны РјРѕРіСѓС‚ пролетать только половину расстояния между катодом Рё анодом.  [8]

Между электродами фотоэлемента предыдущей задачи приложена задерживающая разность потенциалов U 1 Р’.  [9]

Между электродами фотоэлемента предыдущей задачи приложена задерживающая разность потенциалов U 1 Р’.  [10]

Между электродами фотоэлемента предыдущей задачи приложена задерживающая разность потенциалов Ul Р’.  [11]

Чтобы прекратить СЌРјРёСЃСЃРёСЋ электронов, нужно приложить задерживающую разность потенциалов РЅРµ менее 1 7 Р’.  [12]

Чем больше максимальная энергия фотоэлектронов, равная максимальной задерживающей разности потенциалов, тем меньше работа выхода.  [13]

Р’ схеме используется электронный умножитель СЃ бериллиево-медным катодом Рё анализатор СЃ задерживающей разностью потенциалов между сеткой Рё катодом. Сетка расположена параллельно катоду.  [15]

Страницы:      1    2    3

Источник: https://www.ngpedia.ru/id367345p1.html

Потенциал электрического поля. Разность потенциалов. урок. Физика 10 Класс

Как найти значение задерживающей разности потенциалов...

Электрическое поле действует на помещенный в него заряд с силой, которая определяется величиной заряда и напряженностью поля в данной точке.

Если эта сила перемещает заряд – то она совершает работу. Даже если заряда в поле нет, то потенциально эта работа все равно может быть совершена, как только он там окажется. Из опыта других разделов физики мы знаем, что работа связана с энергией.

Для решения некоторых задач удобно использовать энергетическую модель описания электрического поля. Проведем аналогию с гравитационным полем.

Если мы поднимем тело массы , лежащее на земле на высоту  (см. рис. 1), мы изменим его потенциальную энергию на величину . Именно такую работу  и необходимо совершить для этого подъема.

Рис. 1. Изменение потенциальной энергии

Для любой массы  разница энергий на высоте 0 и  будет равна  (см. рис. 2).

Рис. 2. Разница потенциальных энергий

Если разделить значение потенциальной энергии  на массу, мы получим величину, характеризующую гравитационное поле в данной точке. Выражение  уже не зависит от массы, оно показывает работу, которую необходимо совершить для переноса тела, с некоторой массой, на высоту , деленную на эту массу.

Теперь посмотрим, как ввести аналог потенциальной энергии приведенной на единицу массы в электрическом поле.

На заряд , находящийся в поле другого заряда , закрепленного в некоторой точке пространства, действует сила Кулона . Эта сила может переместить заряд , совершив при этом работу. Значит, система двух зарядов, находящихся на определенном расстоянии, обладает потенциальной энергией, зависящей от величины зарядов и расстояния между ними.

Если по аналогии с гравитационным полем рассмотреть величину, равную этой энергии, деленной на заряд , то она уже не будет зависеть от заряда  и охарактеризует только поле заряда  в данной точке. То есть будет являться функцией заряда  и расстояния между зарядами. Эта величина и называется потенциалом электрического поля.

Разность потенциалов двух точек, умноженная на величину заряда , равна работе, необходимой для перемещения этого заряда между этими точками. То есть разность потенциалов двух точек поля – это работа по перемещению между ними единичного заряда.

Как и в поле сил тяжести, эта работа не зависит от траектории  и определяется только положением точек, между которыми перемещается единичный заряд. Такие поля называют консервативными. В разделе «Механика» мы уже говорили, что энергия – величина, требующая для измерения задания «начала отсчета».

Например, в гравитационном поле мы можем считать нулевой потенциальную энергию тела, находящегося на уровне земли. В случае электростатического поля, создаваемого зарядом, естественно считать нулевой потенциальной энергией некоторого заряда, находящегося в поле, его энергию на бесконечном удалении от заряда, в поле которого он находится.

Это и есть «точка отсчета» для потенциальной энергии поля заряда.

Потенциал поля в некоторой точке равен работе по перемещению единичного заряда из этой точки на бесконечность.

Пусть положительный заряд  находится на расстоянии  от положительного заряда  (см. рис. 3).

Рис. 3. Изначальное положение заряда

Какую работу совершит электрическое поле при перемещении заряда  вдоль радиуса в точку, отдаленную на  от ? (См. рис. 4.)

Рис. 4. Конечное положение заряда

По определению работа силы равна этой силе, умноженной на перемещение:

В данном случае действует сила электрического взаимодействия (см. рис. 5), по закону Кулона .

Рис. 5. Действие силы электрического взаимодействия

Сила и перемещение в нашем случае сонаправлены,  и . Так мы можем находить работу для случая, когда сила постоянна на всей траектории. Здесь же сила изменяется по мере отдаления зарядов друг от друга.

Обозначим перемещение заряда (см. рис. 6).

Рис. 6. Перемещение заряда

По мере перемещения заряда  сила изменяется, но на малом (в сравнении с расстоянием до заряда ) отрезке можем считать ее постоянной и находить работу по определению, которое мы привели выше.

Работа, совершаемая силой Кулона на таком малом отрезке  равна , где силу  можно считать постоянной на всем отрезке . Тогда работа при перемещении на расстояние  будет равна сумме работ на  участках (), на каждом из которых сила Кулона постоянна и равна .

Эта сумма будет равна 

Подробный вывод этой формулы вы можете проследить в ответвлении.

Работа при перемещении электрического заряда

Работа по перемещению заряда на малом участке  равна:

Работа на участке  равна сумме работ на каждом участке :

Воспользуемся приближенным равенством:

Прежде чем его применить, покажем, что равенство справедливо. Приведем правую часть к общему знаменателю:

Раскроем скобки:

Заметим, что  – пренебрежимо малая по сравнению с  величина,  не может считаться пренебрежимо малой, т. к. количество  участков  велико. Поэтому в знаменателе можем пренебречь членами  и .

Вернемся к нахождению работы. Распишем выражение по полученной формуле:

Распишем сумму:

Мы знаем, что работа связана с энергией. Система обладает энергией, если силы, возникающие в системе, могут выполнить работу (в нашем случае это сила электростатического взаимодействия зарядов). Работа равна уменьшению потенциальной энергии:

Сравнив с выражением , делаем вывод, что  – это потенциальная энергия взаимодействия двух зарядов. Ранее мы приняли, что потенциальная энергия заряда, отдаленного от источника электрического поля на бесконечность, равна нулю. Посмотрим, как с этим согласуется полученная формула:

Действительно,  будет равна нулю на бесконечном отдалении от заряда , т. к.  при .

Теперь проверим, как полученный результат соотносится с моделью, в которой разноименные заряды обозначены знаками плюс и минус. Если заряды одноименные, то потенциальная энергия взаимодействия положительна .

Система стремится к состоянию с наименьшей потенциальной энергией (как и, например, камень на некоторой высоте  над поверхностью земли, предоставленный сам себе, будет падать вниз, т. е.

уменьшать высоту и с ней потенциальную энергию )

Действительно, заряды будут отталкиваться и сила электрического взаимодействия будет вызывать перемещение заряда на большее расстояние, потенциальная энергия  будет уменьшаться.

Если заряды разноименные, то потенциальная энергия взаимодействия  имеет знак минус. Заряды притягиваются, и сила их взаимодействия вызывает перемещение заряда на меньшее расстояние , потенциальная энергия  уменьшается.

Энергия заряда  в поле заряда , равная , зависит от величин обоих зарядов. Характеристика поля, созданного зарядом , естественно, не должна зависеть от величины помещенного в него заряда. Разделим  на  и получим .

Эта величина называется потенциалом электрического поля и обозначается буквой . Эта характеристика поля показывает, какой энергией обладает положительный заряд, помещенный в данную точку поля.

Как и энергия, потенциал – скалярная величина, измеряется в вольтах.

В нашем случае  – потенциал поля точечного заряда. Точка отсчета потенциалов в нашем случае естественным образом является бесконечно отдаленной точкой (см. рис. 7).

Рис. 7. Точка отсчета потенциалов

В зависимости от задачи точкой отсчета выбирают потенциал поверхности Земли, потенциал отрицательно заряженной пластины конденсатора или потенциал любой другой точки, удобной для решения задачи.

Таким образом, пользуясь определением потенциала, можно вычислить потенциальную энергию заряда, находящегося в электростатическом поле:

и работу поля по перемещению заряда из точки с потенциалом  в точку с потенциалом :

Электрическое поле является консервативным, его работа не зависит от траектории движения заряда, а зависит только от перемещения.

Заряд всегда распределен на каком-то теле, имеющем геометрические размеры. На расстояниях, много больших размеров тела, поле слабо зависит от объема и формы этого тела, и потому модели точечного заряда достаточно. Например, потенциал поля заряженного металлического шара при  эквивалентен потенциалу поля точечного заряда (см. рис. 8):

Рис. 8. Потенциал поля при

.

Внутри шара потенциал во всех точках одинаков и равен потенциалу на поверхности шара (см. рис. 9):

Рис. 9. Потенциал внутри шара

.

Если бы это было не так, то потенциальная энергия в разных точках внутри шара отличалась бы, а, так как внутри металла есть свободные носители заряда, поле выполняло бы работу по перемещению зарядов. В итоге электроны переместились бы в область большего потенциала, тем самым уменьшив его. Таким образом, потенциал во всех точках приравнивается.

Потенциал подчиняется принципу суперпозиции. При наличии нескольких источников поля складываются как векторы напряженности поля, так и потенциалы:

При перемещении заряда между точками с разностью потенциалов 1 кВ электрическое поле совершило работу 40 мкДж. Чему равен заряд?

Это простая задача на понимание смысла величины разности потенциалов.

Разность потенциалов равна работе по переносу заряда, деленной на величину этого заряда.

Выразим значение заряда:

И вычислим ответ:

Ответ: 

Какую работу надо совершить, чтобы перенести заряд 5 мкКл из бесконечности в точку поля, удаленную от центра заряженного шара на 18 см? Заряд шара – 20 мкКл.

Порассуждаем.

— Потенциал поля заряженного шара на бесконечности равен нулю. Следовательно, приближая заряд от бесконечности к шару, внешней силе нужно совершать работу для преодоления силы электростатического взаимодействия. Численно эта работа будет равна работе электрического поля заряженного шара по перемещения заряда с расстояния 18 см на бесконечность.

— Работа по переносу заряда в электрическом поле связана с разностью потенциалов между начальной и конечной точками траектории и величиной заряда.

— Величина переносимого заряда у нас есть.

— Потенциал поля заряженного шара на бесконечности, как мы уже отметили, равен нулю. А в конечной точке траектории мы сможем его вычислить, пользуясь формулой для потенциала поля точечного заряда, которая справедлива и для поля вне заряженного шара.

Приступим к решению.

Найдем потенциал электрического поля заряженного шара в конечной точке траектории.

Потенциал электрического поля заряженного шара на бесконечности равен нулю.

Разность потенциалов электрического поля по переносу заряда из точки с потенциалом  в точку с потенциалом  будет равна:

В то же время она будет равна работе электрического поля по переносу заряда, деленной на заряд:

Величина работы внешних сил, которую надо совершить, чтобы перенести заряд из точки с меньшим потенциалом в точку с большим потенциалом, равна работе электрического поля по переносу такого же заряда в обратном направлении.

Таким образом, мы получили систему из пяти уравнений, решив которую найдем искомую величину. Пронаблюдать математическую часть решения задачи вы можете в свертке.

Ответ: .

Математическая часть решения задачи 2

Подставим выражения для потенциалов из первого и второго уравнений в третье:

Подставим полученную разность потенциалов в четвертое уравнение.

И выразим работу электрического поля:

Согласно пятому уравнению это и есть искомая работа .

Подставим данные из условия и рассчитаем ответ:

Задача решена.

На этом наш урок закончен. Спасибо за внимание.

Список литературы

1. Соколович Ю.А., Богданова Г.С Физика: Справочник с примерами решения задач. – 2-е издание передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.

2. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика: Учеб. для общеобразоват. учреждений. Базовый и профильный уровни. 19-е издание – М.: Просвещение, 2010. 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-сайт phyzika.ru (Источник)        

2. Интернет-сайт physics.ru (Источник)  

3. Интернет-сайт knowlegeport.narod.ru (Источник)

Домашнее задание

1. Какой вид имеет формула для работы электрического поля?

2. Что такое потенциал электрического поля?

3. Решите задачу: точечный заряд , находясь в некоторой точке поля, обладает потенциальной энергией 1 мкДж. Найдите потенциал этой точки поля.

Источник: https://interneturok.ru/lesson/physics/10-klass/osnovy-elektrodinamiki-2/potentsial-elektricheskogo-polya-raznost-potentsialov

Задерживающий потенциал

Как найти значение задерживающей разности потенциалов...

Уравнение Эйнштейна можно записать в виде: и выразить задерживающий потенциал:

На рисунке показан график зависимости задерживающего потенциала от частоты падающего света. По графику можно найти работу выхода А, красную границу nгр , а по наклону прямой можно определить величину постоянной Планка h.

Фотоэлементы широко используются в физике и технике.

Вакуумные фотоэлементы довольно громоздки и дают небольшие токи, но вследствие своей безинерционности и линейной световой характеристики они незаменимы в тех случаях, когда необходимо превратить световые сигналы в электрические без каких-либо искажений.

Существование тока насыщения в фотоэлементах позволят использовать их в стабилизаторах (напряжение изменяется, а ток остается постоянным). Фотоэлементы очень часто применяют в турникетах, для подсчета движущихся изделий на конвейерах и т.п.

ЭФФЕКТ КОМПТОНА

Эффектом Комптона называется рассеяние веществом электромагнитного излучения, при котором частота рассеянного излучения уменьшается по сравнению с первоначальной, и одновременно наблюдается вылет быстрых электронов (электроны отдачи).

Изменение частоты оказывается различной в зависимости от угла наблюдения. Американский ученый Комптон, открывший это явление (1923 г) разработал теорию явления.

Он предложил рассматривать наблюдаемое взаимодействие света с веществом как упругое столкновение

частиц на и электрона. Используя законы сохранения импульса и энергии, Комптон получил формулу для изменения длины волны в зависимости от угла рассеяния..

Мы не будем приводить полный вывод формулы для изменения длины волны, а запишем только законы сохранения и окончательную формулу. Так как эффект Комптона наблюдается только для фотонов с большой энергией (рентгеновские и гамма-лучи), то при вычислениях необходимо использовать формулы СТО, и вывод становится громоздким. [x]

На рис. показано столкновение первоначального фотона с энергией hnо с электроном в веществе (на рис. не показан). Импульс и энергия электрона до столкновения пренебрежимо малы по сравнению с импульсом и энергией фотона, т.е. электрон можно считать свободным.

(Обычно употребляется выражение «рассеяние фотона на свободном электроне»). После столкновения фотон отклоняется от первоначального направления под углом q , а его энергия уменьшается и становится равной hn.Электрон получает импульс и кинетическую энергию и летит под углом j.

(электрон отдачи, угол отдачи).

закон сохранения импульса в векторном и скалярном виде (теорема косинусов). — импульс падающего фотона, — импульс рассеянного фотона, — импульс электрона. q — угол рассеяния    
закон сохранения энергии — энергия падающего фотона, — энергия рассеянного фотона, — кинетическая энергия электрона отдачи (электрон релятивистский).

Подставив в эти законы выражения для указанных величин, приведенные ниже, после преобразований получим:

¨ или изменение длины волны при комптоновском рассеянии излучения (на свободном электроне) Из формул следует, что комптоновское изменение длины волны не зависит от природы рассеивающего вещества, а определяется только углом наблюдения.
= 2,43 пм = 2,43×10-12 м Эта величина называется комптоновской длиной волны электрона

Комптоновское рассеяние может наблюдаться и на свободном протоне, тогда следует использовать комптоновскую длину волны протона:

Из формулы (¨) следует, что изменение l при различных углах рассеяния равно:

q = 0о Dl = 0 фотоны, продолжающие лететь в первоначальном направлении, не изменяют свою длину волны
q = 90о Dl = в этом случае изменение l равно комптоновской длине волны электрона
q = 180о Dl = максимальное изменение l происходит в случае, когда рассеянный фотон движется в противоположном направлении

Ниже приводится таблица формул, используя которые можно получить выражение (¨) для Dl. Компактное расположение формул облегчает также решение задач.

энергия падающего и рассеянного фотонов
импульс —²—
релятивистская кинетическая энергия электрона отдачи
по этой формуле можно найти угол отдачи j

Комптоновское рассеяние наблюдается только для рентгеновских и гамма-лучей. В этом случае изменение длины волны сравнимо с длиной волны падающего излучения, и может быть измерено экспериментально. Для видимого света обнаружить эффект Комптона невозможно, т.к. максимальное изменение Dl = 0,48 пм слишком мало по сравнению со средней длиной световой волны

l » 500 нм = 500000 пм (зеленый свет) и перекрывается тепловым уширением спектральных линий..

Эффект Комптона доказывает, что: 1) свет имеет квантовую природу и

2) для элементарных процессов взаимодействия частиц применимы законы сохранения импульса и энергии.

ЭНЕРГЕТИЧЕСКИЕ СПЕКТРЫ АТОМОВ И МОДЕЛЬ АТОМА БОРА.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/14_78302_zaderzhivayushchiy-potentsial.html

Biz-books
Добавить комментарий