Как найти заряд и устойчивое или неустойчивое равновесие…

Равновесие: определение, виды, примеры

Как найти заряд и устойчивое или неустойчивое равновесие...

Изучение видов равновесия.

Рассмотреть виды равновесия.

Выявить их отличия друг от друга.

Показать практическое применение описанных эффектов.

Опытным путём рассчитать зависимость вероятности падения хлеба маслом вниз от соотношения толщин хлеба и масла.

В природе всё пребывает в равновесии, нет предметов, у которых не было бы центра тяжести и зачастую его сложно определить.

Основная часть

Самая главная наука во вселенной — это физика. На физике, как на фундаменте, стоят все прочие науки. Физика — многогранна и сегодня речь пойдёт о механическом равновесии и его видах.

4.1.          Что такое равновесие

Что такое равновесие? Понятие равновесия — одно из самых универсальных в естественных науках.

Равновесие — это комплекс сил, которые действуя на одну систему, компенсируют друг друга и система не получает ускорение. А система— множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность, единство.

4.2.          Виды равновесия

Существует 3 вида равновесия: устойчивое, неустойчивое и безразличное.

Устойчивое равновесие — это равновесие, при котором тело, выведенное из положения равновесия и предоставленное самому себе, возвращается в прежнее положение.

Неустойчивое равновесие — это равновесие, при котором тело, выведенное из положения равновесия и предоставленное самому себе, будет еще больше отклоняться от положения равновесия.

Безразличное равновесие — это равновесие, при котором тело, выведенное из положения равновесия и предоставленное самому себе, не меняет своего положения (состояния).

1 опыт: устойчивое равновесие: шарик неподвижно лежит на дне сферического углубления. При небольшом смещении тела в любом направлении от первоначального положения равнодействующая сил, действующих на тело, становится отличной от нуля и направлена к положению равновесия. Шарик возвращается в исходную точку.

2 опыт: неустойчивое равновесие: шарик неподвижно лежит на вершине сферической поверхности. При небольшом смещении тела из положения равновесия равнодействующая приложенных к нему сил отлична от нуля и направлена от положения равновесия. Шарик не возвращается в исходную точку.

3 опыт: безразличное равновесие: шарик неподвижно лежит на плоской поверхности. При небольших смещениях тела из первоначального положения равнодействующая приложенных к телу сил остается равной нулю. Шарик после перемещения не меняет своё положение.

4.3.          Применение принципов равновесия

Принципы устойчивого равновесия используются в строительстве зданий. Устойчивое равновесие корабля обеспечивает балласт в трюме.

Понятие устойчивости широко применяется в самолётостроении.

Устойчивость и управляемость летательного аппарата — взаимосвязанные свойства динамики полета.

Управляемость — свойство самолёта отвечать соответствующими линейными и угловыми перемещениями в пространстве на команды управления.

Устойчивость — свойство самолёта восстанавливать без вмешательства пилота кинематические параметры невозмущенного движения и возвращаться к исходному режиму полета после прекращения действия возмущений.

Устойчивое равновесие пассажирского самолёта обеспечивает верхнее расположение крыльев относительно фюзеляжа.

Неустойчивое равновесие применяется в строительстве военных самолётов.

Для достижения сверх манёвренности нужно снизить устойчивость самолёта до нулевой или даже отрицательной — ввести его в состояние неустойчивого равновесия. Например, обеспечить взаимное расположение вектора тяги ниже центра масс. И нужно увеличить тягу двигателей настолько, чтобы она превышала вес самолёта. В таком случае говорят, что удельная тяга больше единицы.

При этом управлять им вручную, когда органы управления связаны напрямую с рулями, становится невозможно. Управление берёт на себя автоматика, а лётчик, грубо говоря, только приказывает ей, что делать. Такой принцип применяется в системах управления истребителей 5-го поколения.

А все самолёты на земле находятся в состоянии безразличного равновесия.

Физику многие боятся, как огня, считая трудной. Однако понимание зависит от способа изложения. Поехали?…

5.1.          Описание системы падающего бутерброда

Распространено убеждение, что бутерброд практически всегда падает маслом вниз. Это связано с равновесием.

Лучший способ исследования в смысле объективности — поставить эксперимент. Нужно ронять на пол бутерброды до тех пор, пока вы не придете к определенному выводу. Но это негигиенично, неэкономично и неэтично. Верный результат можно получить и с помощью мысленного эксперимента. Правда, при условии, что вы умеете доводить мысленный эксперимент до конца.

Для упрощения представим себе, что бутерброд, стоит на ребре. Предположим, что стол резко убрали. Как поведёт себя бутерброд?

Принимаем, что в самом бутерброде при его падении не возникает никаких сил, которые давали бы предпочтение одной из двух ситуаций или они бесконечно малы: трение воздуха о масло и о хлеб одинаково, ветра нет.

Ну а теперь перейдём к расчётам.

5.2.          Определение плотности хлеба имасла.

Для начала вычислим плотность масла и хлеба.

Размеры: 6×4,5×4см

Объём: 108 см3

Вес: 127 г

Плотность: 127 г/108 см3

ρ = 1,18 г/см3

Размеры: 7×9,5×10,5см

Объём: 698,3 см3

Вес: 318 г

Плотность: 318г / 698,3 см3

ρ = 0, 45 г/см3

5.3.          Расчет соотношения толщины хлеба имасла

Нарисуем схему бутерброда, стоящего на ребре.

Принимаем следующие обозначения:

М — толщина масла

Хл — толщина хлеба

М/2 — половина масла

М1 — расстояние от центра масс масла до центра масс бутерброда

Рм — сила, действующая на масло

Р — сила, действующая на бутерброд

Хл/2 — половина хлеба

Хл1 — расстояние от центра масс хлеба до центра масс бутерброда

Рхл — сила, действующая на хлеб

ЦМ — центр масс

Ц — центр бутерброда

Вычисляем силы, действующие на хлеб и масло:

Рм = mм * g = ρм * Vм = ρм * Sбут * М

Рхл = ρхл * Sбут * Хл

Вычисляем силы, действующие на бутерброд:

М1 * Рм = Хл1 * Рхл

Хл1 + М1 = (Хл + М) / 2 =>

Хл1 * (ρхл * Хл + ρм * М)/ρм * М = (Хл + М)/2

Вычисляем расположение центра масс:

Хл1 = (Хл + М) * ρхл * М / 2*(ρхл * Хл + ρм * М)

Хл1 =

Цм = Хл1 + Хл/2

Цм = ((Хл + М) * ρхл * М)/ (2*(ρхл * Хл + ρм * М)) + Хл/2

Вычисляем расположение центра бутерброда:

Ц = (М+Хл)/2

Сравниваем расположение центра масс и центра бутерброда.

Условия падения бутерброда маслом вниз:

Цм>Ц

Данные и формулы заносим в таблицу Exel. Полученные результаты расчётов приведены в таблице 1.

Таблица 1

Толщина хлеба ХлТолщина хлеба ХлТолщина хлеба Хл
1см1,5см2см
Толщина маслаЦентр бутербродаЦентр массТолщина маслаЦентр бутербродаЦентр массТолщина маслаЦентр бутербродаЦентр масс
МЦ,ЦмМЦ,ЦмМЦ,Цм
смсмсмсмсмсмсмсмсм
0,10,550,610,10,80,870,11,051,12
0,20,60,710,20,850,970,21,11,23
0,30,650,790,30,91,060,31,151,32
0,40,70,860,40,951,140,41,21,41
0,50,750,930,511,220,51,251,49
0,60,80,990,61,051,290,61,31,57
0,70,851,050,71,11,360,71,351,65
0,80,91,110,81,151,420,81,41,72
0,90,951,170,91,21,480,91,451,78
111,2211,251,5511,51,85
1,11,051,281,11,31,611,11,551,92
1,21,11,331,21,351,661,21,61,98
1,31,151,391,31,41,721,31,652,04
1,41,21,441,41,451,781,41,72,10
1,51,251,501,51,51,841,51,752,16

Итак, делаем следующие выводы:

  1.               Мы рассмотрели виды равновесия
  2.               Показали практическое применение физических принципов равновесия на примере авиации.
  3.               Вычислили и доказали, что плотность масла больше плотности хлеба.
  4.               Провели расчёты устойчивости системы бутерброд — масло.
  5.               Рассмотрели действующие на систему силы и определили, что при наших условиях бутерброд всегда должен падать маслом вниз.

Заключительная часть

Мы живём в удивительном мире, нам хочется понять то, что мы видим вокруг, ищем ответы на вопросы: почему деревья качаются, почему в дырках ничего нет, почему апельсины круглые, почему всё происходит так, а не иначе? Мы попытались приблизиться к пониманию того многообразия сил, которые действуют на тела, в том числе и на нас даже в состоянии покоя. Отличаясь по масштабам как от атомов, так и от звёзд мы раздвигаем горизонты исследований, чтобы охватить как очень маленькие, так и очень большие объекты.

Хочется закончить словами Стивена Хокинга: «И, если будут найдены ответы на все вопросы, это будет полным триумфом человеческого разума, ибо тогда нам станет понятен замысел Бога».

Литература:

  1.               Сайт https://ru.wikipedia.org/
  2.               Учебник физики 7–9 класс Пёрышкин А. В.
  3.               Учебник математики 8 класс Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова
  4.               Заочная физико-техническая школа ФИЗИКА «Векторы в физике»
  5.               Я. И. Перельман Занимательная физика

Источник: https://moluch.ru/young/archive/29/1761/

Устойчивое равновесие

Как найти заряд и устойчивое или неустойчивое равновесие...
Определение

Если тело находится в состоянии покоя относительно инерциальной системы отсчета, то считают, что оно находится в равновесии.

Условия равновесия изучает раздел физики, который называют статикой.

Условия равновесия тела

Первое условие равновесия можно сформулировать исходя, из второго закона Ньютона: тело может находиться в состоянии покоя в некоторой инерциальной системе отсчета только, если равнодействующая всех сил, приложенных к этому телу (материальной точке) равна нулю:

\[\sum\limitsN_{i=1}{{\overline{F}}_i=0\left(1\right).}\]

Выражение (1) называют необходимым условием равновесия тела.

Если тело не подходит под определение материальной точки, то первого условия равновесия недостаточно.

Если тело может вращаться около некоторой оси, то оно находится в состоянии равновесия, если сумма моментов всех действующих на него сил относительно любой оси вращения равна нулю:

\[\sum\limitsN_{i=1}{{\overline{M}}_i=0\left(2\right).}\]

Второе условие равновесия называют правилом моментов сил. $\ $\textit{}

Выше названные условия являются достаточными для того, чтобы тело считать находящимся в равновесии.

Виды равновесия

Равновесие можно разделить на: устойчивое, неустойчивое и безразличное.

Равновесие тела называют устойчивым, если при небольших смещениях, действующие на него силы, стремятся вернуть его снова в положение равновесия.

Положение равновесия называют неустойчивым, если при малых смещениях силы, оказывающие воздействие на тело уводят его из положения равновесия еще больше.

Если при небольших смещениях из положения равновесия силы, действующие на тело и их моменты, уравновешиваются, как и прежде, то такое равновесие называют безразличным.

В устойчивом положении равновесия центр тяжести занимает самое низкое положение в сравнении со всеми возможными соседними положениями тела.

1) Допустим, что тело может вращаться около закрепленной оси. Тело находится в положении равновесия, если ось проходит через центр масс тела (безразличное равновесие). Если центр тяжести тела находится ниже оси вращения, то положение равновесия тела будет устойчивым. Пусть ось вращения расположена ниже центра масс тела, то равновесие будет неустойчивым.

2) В том случае, если тело имеет точку опоры (например, шарик, лежащий на опоре), то тело находится в состоянии устойчивого равновесия, когда равнодействующая всех сил, приложенных к телу, направлена в сторону положения равновесия. Если равнодействующая равна нулю, то положение равновесия безразличное. Положение тела будет не устойчивым равновесием, если равнодействующая сил, приложенных к телу, направлена от положения равновесия.

3) Пусть тело имеет площадь опоры. Тогда его равновесие будет устойчивым, если вертикаль, проводимая через центр масс этого тела, пересечет площадь опоры.

Потенциальная энергия и устойчивое равновесие

Как было сказано тело может находиться в состоянии равновесия только, если равнодействующая всех сил, приложенных к телу, равна нулю. Следовательно, равновесию соответствует точка минимума (M) или максимума (N) потенциальной энергии ($E_p$), так как в этих точках сила становится равной нулю. Но, следует заметить, что точки максимума и минимума энергии не являются равноценными (рис.1).

Если частица находится в точке с минимумом потенциальной энергии, ее координата на рис.1 $x_M$. На участке $x_1\le x\le x_M$ потенциальная энергия убывает, значит, на частицу действует положительная сила отталкивания, которая возвращает частицу в точку М.

На отрезке $x_M\le x\le x_2$ энергия $E_p$ увеличивается, на частицу оказывает воздействие отрицательная сила притяжения, которая снова возвращает тело в точку M.

Получается, что если частицу, находящуюся в точке с минимумом потенциальной энергии вывести из положения равновесия, то под действием сил она будет возвращаться назад в эту точку. Можно сделать следующий вывод: условием устойчивого равновесия является минимальная величина потенциальной энергии.

Если провести рассуждения, которые аналогичны тем, что были выше, получим, что точка N, точка максимума потенциальной энергии — это точка неустойчивого равновесия.

Анализируя условия равновесия, следует рассматривать окрестность точки поля ближайшую к ней, где нет дополнительных экстремумов энергии.

Проводя анализ сил, действующих на частицу, которую смещали вправо от т М ($x_2>x_M$) мы считали, то на частицу действуют силы притяжения. Это справедливо тогда, когда частица находится левее максимума энергии.

Если частица перемещена дальше вправо, то мы получаем силу отталкивания и частица не вернется в прежнее положение.

Примеры задач с решением

Пример 1

Задание. Величина силы, действующей на материальную точку, движущейся по оси X, задана уравнением: $F=-Ax\ (где\ A>0).$ Считая систему консервативной, укажите на потенциальной кривой точку устойчивого равновесия тела.

Решение. Для того чтобы определить форму потенциальной кривой найдем зависимость потенциальной энергии от координаты материальной точки ($E_p(x)$). Для этого используем формулу связи между потенциальной энергией и консервативной силой:

\[F_x=-\frac{dE_p}{dx}\to E_p=-\int{F_xdx}\left(1.1\right).\]

Подставим в подынтегральное выражение уравнение $F=-Ax$, которое задает нашу силу:

\[E_p=\int{Axdx}=A\frac{x2}{2}+C.\]

Графиком $E_p(x)$ , будет парабола (рис.2). Минимум потенциальной энергии будет находиться в точке $E_p\left(x=0\right)=С.$

Ответ. Точка С на рис.2 — положение устойчивого равновесия.

Пример 2

Задание. Будет ли равновесие шарика, подвешенного на нити устойчивым (рис.3)?

Решение. Точку подвеса шарика 0 можно рассматривать как ось вращения. Цент масс шарика находится ниже оси вращения, следовательно, равновесие системы в точке А будет устойчивым. Если шарик сместить из точки A в точку B, то на него будут действовать силы, которые возвращают его в положение А (равнодействующая сил $\overline{F}$).

Ответ. Равновесие устойчиво.

Читать дальше: физика плавания тела.

Источник: https://www.webmath.ru/poleznoe/fizika/fizika_124_ustojchivoe_ravnovesie.php

Устойчивое и неустойчивое равновесие

Как найти заряд и устойчивое или неустойчивое равновесие...

Из второго закона Ньютона следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс.

Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю.

${\overrightarrow{F}}={\overrightarrow{F_1}}+{\overrightarrow{F_2}}+…= 0$

Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил.

Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.

Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы.

Произведение модуля силы $F$ на плечо d называется моментом силы M. Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Правило моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов сил. Оба эти условия не являются достаточными для покоя.

Рисунок 1. Безразличное равновесие. Качение колеса по горизонтальной поверхности. Равнодействующая сила и момент сил равны нулю

Катящееся по горизонтальной поверхности колесо — пример безразличного равновесия (рис. 1). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают состояния устойчивого и неустойчивого равновесия.

Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние.

При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия. Шар, лежащий на плоской горизонтальной поверхности, находится в состоянии безразличного равновесия.

Рисунок 2. Различные виды равновесия шара на опоре. (1) — безразличное равновесие, (2) — неустойчивое равновесие, (3) — устойчивое равновесие

Шар, находящийся в верхней точке сферического выступа, — пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис. 2).

Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс.

При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым.

Если же центр масс расположен выше оси — состояние равновесия неустойчиво (рис. 3).

Рисунок 3. Устойчивое (1) и неустойчивое (2) равновесие однородного круглого диска, закрепленного на оси O; точка C — центр массы диска; ${\overrightarrow{F}}_т\ $— сила тяжести; ${\overrightarrow{F}}_{у\ }$— упругая сила оси; d — плечо

Особым случаем является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела.

Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры, т. е. внутри контура, образованного линиями, соединяющими точки опоры.

Если же эта линия не пересекает площадь опоры, то тело опрокидывается.

Задача 1

Наклонная плоскость наклонена под углом 30o к горизонту (рис. 4). На ней находится тело Р, масса которого m=2 кГ. Трением можно пренебречь. Нить, перекинутая через блок, составляет угол 45o с наклонной плоскостью. При каком весе груза Q тело Р будет в равновесии?

Решение

Рисунок 4

Тело находится под действием трех сил: силы тяжести Р, натяжения нити с грузом Q и силы упругости F со стороны плоскости, давящей на него в направлении, перпендикулярном к плоскости. Разложим силу Р на составляющие: $\overrightarrow{Р}={\overrightarrow{Р}}_1+{\overrightarrow{Р}}_2$.

Условие ${\overrightarrow{P}}_2=$ Для равновесия, учитывая удвоение усилия подвижным блоком, необходимо, чтобы $\overrightarrow{Q}=-{2\overrightarrow{P}}_1$. Отсюда условие равновесия: $m_Q=2m{sin \widehat{{\overrightarrow{P}}_1{\overrightarrow{P}}_2}\ }$.

Подставляя значения получим: $m_Q=2\cdot 2{sin \left(90{}\circ -30{}\circ -45{}\circ \right)\ }=1,035\ кГ$.

Задача 2

При ветре привязной аэростат висит не над той точкой Земли, к которой прикреплен трос (рис. 5). Натяжение троса составляет 200 кГ, угол с вертикалью а=30${}\circ$. Какова сила давления ветра?

Решение

\[{\overrightarrow{F}}_в=-{\overrightarrow{Т}}_1;\ \ \ \ \left|{\overrightarrow{F}}_в\right|=\left|{\overrightarrow{Т}}_1\right|=Тg{sin {\mathbf \alpha }\ }\] \[\left|{\overrightarrow{F}}_в\right|=\ 200\cdot 9.81\cdot {sin 30{}\circ \ }=981\ Н\]

Рисунок 5

Источник: https://spravochnick.ru/fizika/statika/ustoychivoe_i_neustoychivoe_ravnovesie/

Biz-books
Добавить комментарий