Как найти угол между падающим и преломленным пучками…

Преломление света. Полное внутреннее отражение. урок. Физика 11 Класс

Как найти угол между падающим и преломленным пучками...

На предыдущих уроках мы говорили о судьбе луча в двух случаях: что будет, если луч света распространяется в прозрачно однородной среде? Правильный ответ  – он будет распространяться прямолинейно. А что будет, когда луч света падает на границу раздела двух сред? На прошлом уроке мы говорили об отраженном луче, сегодня мы рассмотрим ту часть светового пучка, которая поглощается средой.

Какова же будет судьба луча, который проник из первой оптически прозрачной среды, во вторую оптически прозрачную среду?

Рис. 1. Преломление света

Если луч падает на границу раздела двух прозрачных сред, то часть световой энергии возвращается в первую среду, создавая отраженный пучок, а другая часть проходит внутрь во вторую среду и при этом, как правило, изменяет свое направление.

Изменение направления распространения света в случае его прохождения через границу раздела двух сред называют преломлением света (рис. 1).

Рис. 2. Углы падения, преломления и отражения

На рисунке 2 мы видим падающий луч, угол падания обозначим α. Луч, который будет задавать направление преломленного пучка света, будем называть преломленным лучом.

Угол между перпендикуляром к границе раздела сред, восстановленным из точки падения, и преломленным лучом называют углом преломления, на рисунке это угол γ. Для полноты картины дадим еще изображение отображенного луча и, соответственно, угла отражения β.

Какова же связь между углом падения и углом преломления, можно ли предсказать, зная угол падения и то, с какой среды в какую перешел луч, каким будет угол преломления? Оказывается можно!

Получим закон, количественно описывающий зависимость между углом падения и углом преломления. Воспользуемся принципом Гюйгенса, который регламентирует распространение волны в среде. Закон состоит из двух частей.

Падающий луч, преломленный луч и перпендикуляр, восстановленный в точку падения, лежат в одной плоскости.

Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и равна отношению скоростей света в этих средах.

Этот закон называют законом Снеллиуса, в честь голландского ученого, впервые его сформулировавшего. Причина преломления – в разнице скоростей света в разных средах.

Убедиться в справедливости закона преломления можно, экспериментально направляя луч света под разными углами на границу раздела двух сред и измеряя углы падения и преломления.

Если менять эти углы, измерять синусы и находить отношения синусов этих углов, мы убедимся в том, что закон преломления действительно справедлив.

Доказательства закона преломления при помощи принципа Гюйгенса – еще одно подтверждение волновой природы света.

Относительный показатель преломления n21 показывает, во сколько раз скорость света V1 в первой среде отличается от скорости света V2 во второй среде.

n21 =

Относительный показатель преломления – это наглядная демонстрация того факта, что причина изменения направления света при переходе из одной среды в другую – это разная скорость света в двух средах. Часто для характеристики оптических свойств среды пользуются понятием «оптическая плотность среды» (рис. 3).

Рис. 3. Оптическая плотность среды (α > γ)

Если луч переходит из среды с большей скоростью света в среду с меньшей скоростью света, то, как видно из рисунка 3 и закона преломления света, он будет прижиматься к перпендикуляру, то есть угол преломления меньше, чем угол падения. В этом случае говорят, что луч перешел из менее плотной оптической среды в более оптически плотную среду. Пример: из воздуха в воду; из воды в стекло.

Возможна и обратная ситуация: скорость света в первой среде меньше скорости света во второй среде (рис. 4).

Рис. 4. Оптическая плотность среды (α < γ)

Тогда угол преломления будет больше угла падения, а про такой переход скажут, что он совершен из оптически более плотной в менее оптически плотную среду (из стекла в воду).

Оптическая плотность двух сред может отличаться достаточно существенно, таким образом, становится возможна ситуация, приведенная на фотографии (рис. 5):

Рис. 5. Отличие оптической плотности сред

Обратите внимание, насколько смещена голова относительно туловища, находящегося в жидкости, в среде с большей оптической плотностью.

Однако относительный показатель преломления – не всегда удобная для работы характеристика, потому что он зависит от скоростей света в первой и во второй средах, а вот таких сочетаний и комбинаций двух сред может быть очень много (вода – воздух, стекло – алмаз, глицерин – спирт, стекло – вода и так далее). Таблицы были бы очень громоздкими, работать было бы неудобно, и тогда ввели одну абсолютную среду, по сравнению с которой сравнивают скорость света в других средах. В качестве абсолюта был выбран вакуум и скорости света сравниваются со скоростью света в вакууме.

Абсолютный показатель преломления среды n – это величина, которая характеризует оптическую плотность среды и равна  отношению скорости света С в вакууме к скорости света в данной среде.           

Абсолютный показатель преломления удобнее для работы, ведь мы скорость света в вакууме знаем всегда, она равна 3·108м/с и является универсальной физической постоянной.

Абсолютный показатель преломления зависит от внешних параметров: температуры, плотности, а также от длины волны света, поэтому в таблицах обычно указывают средний показатель преломления для данного диапазона длин волн. Если сравнить показатели преломления воздуха, воды и стекла (Рис. 6), то видим, что у воздуха показатель преломления близок к единице, поэтому мы и будем его брать при решении задач за единицу.

Рис. 6. Таблица абсолютных показателей преломления для разных сред

Несложно получить связь абсолютного и относительного показателя преломления сред.

Относительный показатель преломления , то есть для луча, переходящего из среды один в среду два, равен отношению абсолютного показателя преломления во второй среде к абсолютному показателю преломления в первой среде.

Например:  =  ≈ 1,16 

Если абсолютные показатели преломления двух сред практически одинаковы, это значит, что относительный показатель преломления при переходе из одной среды в другую будет равен единице, то есть луч света фактически не будет преломляться.

Например, при переходе из анисового масла в драгоценный камень берилл свет практически не отклонится, то есть будет вести себя так, как при прохождении анисового масла, так как показатель преломления у них 1,56 и 1,57 соответственно, таким образом, драгоценный камень можно как бы спрятать в жидкости, его просто не будет видно.

Если налить воду в прозрачный стакан и посмотреть через стенку стакана на свет, то мы увидим серебристый блеск поверхности вследствие явления полного внутреннего отражения, о котором сейчас пойдет речь.

При переходе луча света из более плотной оптической среды в менее плотную оптическую среду может наблюдаться интересный эффект. Для определенности будем считать, что свет идет из воды в воздух.

Предположим, что в глубине водоема находится точечный источник света S, испускающий лучи во все стороны. Например, водолаз светит фонариком.

Луч SО1 падает на поверхность воды под наименьшим углом, этот луч частично преломляется – луч О1А1 и частично отражается назад в воду – луч О1В1. Таким образом, часть энергии падающего луча передается преломленному лучу, а оставшаяся часть энергии – отраженному лучу. 

Рис. 7. Полное внутреннее отражение

Луч SО2, чей угол падения больше, также разделяется на два луча: преломленный и отраженный, но энергия исходного луча распределяется между ними уже по-другому: преломленный луч О2А2 будет тусклее, чем луч О1А1, то есть получит меньшую долю энергии, а отраженный луч О2В2, соответственно, будет ярче, чем луч О1В1, то есть получит большую долю энергии. По мере увеличения угла падения прослеживается все та же закономерность – все большая доля энергии падающего луча достается отраженному лучу и все меньшая – преломленному лучу. Преломленный луч становится все тусклее и в какой-то момент исчезает совсем, это исчезновение происходит при достижении угла падения, которому отвечает угол преломления 900. В данной ситуации преломленный луч ОА должен был бы пойти параллельно поверхности воды, но идти уже нечему – вся энергия падающего луча SО целиком досталась отраженному лучу ОВ. Естественно, что при дальнейшем увеличении угла падения преломленный луч будет отсутствовать. Описанное явление и есть полное внутреннее отражение, то есть более плотная оптическая среда при рассмотренных углах не выпускает из себя лучи, все они отражаются внутрь нее. Угол, при котором наступает это явление, называется предельным углом полного внутреннего отражения.

Величину предельного угла легко найти из закона преломления:

 =  =>   = arcsin, для воды  ≈ 490 

Самым интересным и востребованным применением явления полного внутреннего отражения являются так называемые волноводы, или волоконная оптика. Это как раз тот способ подачи сигналов, который используется современными телекоммуникационными компаниями в сетях Интернет.

Мы получили закон преломления света, ввели новое понятие – относительный и абсолютный показатели преломления, а также разобрались с явлением полного внутреннего отражения и его применением, таким как волоконная оптика. Закрепить знания можно, разобрав соответствующие тесты и тренажеры в разделе урока.

Получим доказательство закона преломления света при помощи принципа Гюйгенса. Важно понимать, что причина преломления – это разность скоростей света в двух различных средах. Обозначим скорость света в первой среде V1, а во второй среде – V2 (рис. 8).

Рис. 8. Доказательство закона преломления света

Пусть на плоскую границу раздела двух сред, например из воздуха в воду, падает плоская световая волна. Волновая поверхность АС перпендикулярна лучам  и , поверхности раздела сред МN сначала достигает луч , а луч  достигнет этой же поверхности спустя промежуток времени ∆t, который будет равен пути СВ, деленному на скорость света в первой среде .

∆t =   

Поэтому в момент времени, когда вторичная волна в точке В только начнет возбуждаться, волна от точки А уже имеет вид полусферы радиусом АD, который равен скорости света во второй среде на ∆t: АD = ·∆t, то есть принцип Гюйгенса в наглядном действии.

Волновую поверхность преломленной волны можно получить, проведя поверхность, касательную ко всем вторичным волнам во второй среде, центры которых лежат на границе раздела сред, в данном случае это плоскость ВD, она является огибающей вторичных волн.

Угол падения α луча равен углу САВ в треугольнике АВС, стороны одного из этих углов перпендикулярны сторонам другого. Следовательно, СВ будет равно скорости света в первой среде на ∆t 

СВ = ·∆t = АВ·sin α  

В свою очередь, угол преломления будет равен углу АВD в треугольнике АВD, поэтому:

АD = ·∆t = АВ·sin γ

Разделив почленно выражения друг на друга, получим:

   =  =    

n – постоянная величина, которая не зависит от угла падения.

Мы получили закон преломления света, синус угла падения к синусу угла преломления есть величина постоянная для данных двух сред и равная отношению скоростей света в двух данных средах.

Кубический сосуд с непрозрачными стенками расположен так, что глаз наблюдателя не видит его дна, но полностью видит стенку сосуда СD. Какое количество воды нужно налить в сосуд, чтобы наблюдатель смог увидеть предмет F, находящийся на расстоянии b = 10 см от угла D? Ребро сосуда α = 40 см (рис. 9).

Что очень важно при решении этой задачи? Догадаться, что так как глаз не видит дна сосуда, но видит крайнюю точку боковой стенки, а сосуд представляет из себя куб, то угол падения луча на поверхность воды, когда мы ее нальем, будет равен 450.

Рис. 9. Задача ЕГЭ

Луч падает в точку F, это значит, что мы видим четко предмет, а черным пунктиром изображен ход луча, если бы не было воды, то есть до точки D. Из треугольника NFК тангенс угла β, тангенс угла преломления, – это отношение противолежащего катета к прилежащему или, исходя из рисунка, h минус b, деленное на h.

tg β =  = , h – это высота жидкости, которую мы налили;

b – расстояние от точки D до предмета, заданное в условии.

Выражаем из полученной зависимости высоту h: h =  =  

Воспользуемся законом преломления, согласно которому n = , отсюда = .

После преобразований получим: .

В итоге мы получаем, что необходимо налить воду высотой приблизительно 27 см, в этом случае мы будем видеть предмет F, находящийся на расстоянии 10 см от стенки.

Наиболее интенсивное явление полного внутреннего отражения используется в волоконных оптических системах.

Рис. 10. Волоконная оптика

Если в торец сплошной стеклянной трубки направить пучок света, то после многократного полного внутреннего отражения пучок выйдет с противоположной стороны трубки. Получается, что стеклянная трубка – проводник световой волны или волновод. Это произойдет независимо от того, прямая это трубка или изогнутая (Рис. 10).

Первые световоды, это второе название волноводов, использовались для подсвечивания труднодоступных мест (при проведении медицинских исследований, когда свет подается на один конец световода, а второй конец освещает нужное место).

Основное применение – это медицина, дефектоскопия моторов, однако наибольшее применение такие волноводы получили в системах передачи информации.

Несущая частота при передаче сигнала световой волной в миллион раз превышает частоту радиосигнала, это значит, что количество информации, которое мы можем передать при помощи световой волны, в миллионы раз больше количества информации, передающейся радиоволнами.

Это прекрасная возможность передачи огромной информации простым и недорогим способом. Как правило, информация по волоконному кабелю передается при помощи лазерного излучения. Волоконная оптика незаменима для быстрой и качественной передачи компьютерного сигнала, содержащего большой объем передаваемой информации. А в основе всего этого лежит такое простое и обычное явление, как преломление света.   

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) – М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика – 9, Москва, Просвещение, 1990. 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

  1. Дать определение преломления света.
  2. Назовите причину преломления света.
  3. Назовите самые востребованные применения полного внутреннего отражения.

Источник: https://interneturok.ru/lesson/physics/11-klass/boptikab/prelomlenie-sveta-polnoe-vnutrennee-otrazhenie

Преломление света

Как найти угол между падающим и преломленным пучками...

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: закон преломления света, полное внутреннее отражение.

На границе раздела двух прозрачных сред наряду с отражением света наблюдается его преломление — свет, переходя в другую среду, меняет направление своего распространения.

Преломление светового луча происходит при его наклонном падении на поверхность раздела (правда, не всегда — читайте дальше про полное внутреннее отражение). Если же луч падает перпендикулярно поверхности, то преломления не будет — во второй среде луч сохранит своё направление и также пойдёт перпендикулярно поверхности.

Закон преломления (частный случай)

Мы начнём с частного случая, когда одна из сред является воздухом. Именно такая ситуация присутствует в подавляющем большинстве задач. Мы обсудим соответствующий частный случай закона преломления, а уж затем дадим самую общую его формулировку.

Предположим, что луч света, идущий в воздухе, наклонно падает на поверхность стекла, воды или какой-либо другой прозрачной среды. При переходе в среду луч преломляется, и его дальнейший ход показан на рис. 1.

Рис. 1. Преломление луча на границе «воздух–среда»

В точке падения проведён перпендикуляр (или, как ещё говорят, нормаль) к поверхности среды. Луч , как и раньше, называется падающим лучом, а угол между падающим лучом и нормалью — углом падения. Луч — это преломлённый луч; угол между преломлённым лучом и нормалью к поверхности называется углом преломления.

Всякая прозрачная среда характеризуется величиной , которая называется показателем преломления этой среды. Показатели преломления различных сред можно найти в таблицах. Например, для стекла , а для воды .

Вообще, у любой среды ; показатель преломления равен единице только в вакууме. У воздуха , поэтому для воздуха с достаточной точностью можно полагать в задачах (в оптике воздух не сильно отличается от вакуума).

Закон преломления (переход «воздух–среда»).

1) Падающий луч, преломлённый луч и нормаль к поверхности, проведённая в точке падения, лежат в одной плоскости.
2) Отношение синуса угла падения к синусу угла преломления равно показателю преломления среды:

. (1)

Поскольку из соотношения (1) следует, что , то есть — угол преломления меньше угла падения. Запоминаем: переходя из воздуха в среду, луч после преломления идёт ближе к нормали.

Показатель преломления непосредственно связан со скоростью распространения света в данной среде. Эта скорость всегда меньше скорости света в вакууме: . И вот оказывается,что

. (2)

Почему так получается, мы с вами поймём при изучении волновой оптики. А пока скомбинируем формулы . (1) и (2):

. (3)

Так как показатель преломления воздуха очень близок единице, мы можем считать, что скорость света в воздухе примерно равна скорости света в вакууме . Приняв это во внимание и глядя на формулу . (3), делаем вывод: отношение синуса угла падения к синусу угла преломления равно отношению скорости света в воздухе к скорости света в среде.

Обратимость световых лучей

Теперь рассмотрим обратный ход луча: его преломление при переходе из среды в воздух. Здесь нам окажет помощь следующий полезный принцип.

Принцип обратимости световых лучей. Траектория луча не зависит от того, в прямом или обратном направлении распространяется луч. Двигаясь в обратном направлении, луч пойдёт в точности по тому же пути, что и в прямом направлении.

Согласно принципу обратимости, при переходе из среды в воздух луч пойдёт по той же самой траектории, что и при соответствующем переходе из воздуха в среду (рис. 2) Единственное отличие рис. 2 от рис. 1 состоит в том, что направление луча поменялось на противоположное.

Рис. 2. Преломление луча на границе «среда–воздух»

Раз геометрическая картинка не изменилась, той же самой останется и формула (1): отношение синуса угла к синусу угла по-прежнему равно показателю преломления среды. Правда, теперь углы поменялись ролями: угол стал углом падения, а угол — углом преломления.

В любом случае, как бы ни шёл луч — из воздуха в среду или из среды в воздух — работает следующее простое правило. Берём два угла — угол падения и угол преломления; отношение синуса большего угла к синусу меньшего угла равно показателю преломления среды.

Теперь мы целиком подготовлены для того, чтобы обсудить закон преломления в самом общем случае.

Закон преломления (общий случай)

Пусть свет переходит из среды 1 с показателем преломления в среду 2 с показателем преломления . Среда с большим показателем преломления называется оптически более плотной; соответственно, среда с меньшим показателем преломления называется оптически менее плотной.

Переходя из оптически менее плотной среды в оптически более плотную, световой луч после преломления идёт ближе к нормали (рис. 3). В этом случае угол падения больше угла преломления: .

Рис. 3.

Наоборот, переходя из оптически более плотной среды в оптически менее плотную, луч отклоняется дальше от нормали (рис. 4). Здесь угол падения меньше угла преломления:

Рис. 4.

Оказывается, оба этих случая охватываются одной формулой — общим законом преломления, справедливым для любых двух прозрачных сред.

Закон преломления.1) Падающий луч, преломлённый луч и нормаль к поверхности раздела сред, проведённая в точке падения, лежат в одной плоскости.

2) Отношение синуса угла падения к синусу угла преломления равно отношению показателя преломления второй среды к показателю преломления первой среды:

. (4)

Нетрудно видеть, что сформулированный ранее закон преломления для перехода «воздух–среда» является частным случаем данного закона. В самом деле, полагая в формуле (4) , мы придём к формуле (1).

Вспомним теперь, что показатель преломления — это отношение скорости света в вакууме к скорости света в данной среде: . Подставляя это в (4), получим:

. (5)

Формула (5) естественным образом обобщает формулу (3). Отношение синуса угла падения к синусу угла преломления равно отношению скорости света в первой среде к скорости света во второй среде.

Полное внутреннее отражение

При переходе световых лучей из оптически более плотной среды в оптически менее плотную наблюдается интересное явление — полное внутреннее отражение. Давайте разберёмся, что это такое.

Будем считать для определённости, что свет идёт из воды в воздух. Предположим, что в глубине водоёма находится точечный источник света , испускающий лучи во все стороны. Мы рассмотрим некоторые из этих лучей (рис. 5).

Рис. 5. Полное внутреннее отражение

Луч падает на поверхность воды под наименьшим углом. Этот луч частично преломляется (луч ) и частично отражается назад в воду (луч ). Таким образом, часть энергии падающего луча передаётся преломлённому лучу, а оставшаяся часть энергии -отражённому лучу.

Угол падения луча больше. Этот луч также разделяется на два луча — преломлённый и отражённый. Но энергия исходного луча распределяется между ними по-другому: преломлённый луч будет тусклее, чем луч (то есть получит меньшую долю энергии), а отражённый луч — соответственно ярче, чем луч (он получит большую долю энергии).

По мере увеличения угла падения прослеживается та же закономерность: всё большая доля энергии падающего луча достаётся отражённому лучу, и всё меньшая — преломлённому лучу. Преломлённый луч становится всё тусклее и тусклее, и в какой-то момент исчезает совсем!

Это исчезновение происходит при достижении угла падения , которому отвечает угол преломления . В данной ситуации преломлённый луч должен был бы пойти параллельно поверхности воды, да идти уже нечему — вся энергия падающего луча целиком досталась отражённому лучу .

При дальнейшем увеличении угла падения преломлённый луч и подавно будет отсутствовать.

Описанное явление и есть полное внутреннее отражение. Вода не выпускает наружу лучи с углами падения, равными или превышающими некоторое значение — все такие лучи целиком отражаются назад в воду. Угол называется предельным углом полного отражения.

Величину легко найти из закона преломления. Имеем:

.

Но , поэтому

,

откуда

.

Так, для воды предельный угол полного отражения равен:

.

Явление полного внутреннего отражения вы легко можете наблюдать дома. Налейте воду в стакан, поднимите его и смотрите на поверхность воды чуть снизу сквозь стенку стакана. Вы увидите серебристый блеск поверхности — вследствие полного внутреннего отражения она ведёт себя подобно зеркалу.

Важнейшим техническим применением полного внутреннего отражения является волоконная оптика.

Световые лучи, запущенные внутрь оптоволоконного кабеля (световода) почти параллельно его оси, падают на поверхность под большими углами и целиком, без потери энергии отражаются назад внутрь кабеля.

Многократно отражаясь, лучи идут всё дальше и дальше, перенося энергию на значительное расстояние. Волоконно-оптическая связь применяется, например, в сетях кабельного телевидения и высокоскоростного доступа в Интернет.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/prelomlenie-sveta/

Biz-books
Добавить комментарий