Электроснабжение объектов. Часть 2. Расчет токов короткого замыкания в электроустановках до 1000 В. Кабышев А.В.

Содержание
  1. Расчет токов короткого замыкания в электроустановках напряжением до 1000 В (стр. 1 )
  2. Федеральное агентство по образованию
  3. Волгоградский государственный технический университет
  4. Учебное пособие
  5. 1. ОБЩИЕ ПОЛОЖЕНИЯ
  6. силовых трансформаторов
  7. 2.2. Активное и индуктивное сопротивления реакторов
  8. 2.3. Активное и индуктивное сопротивления шинопроводов
  9. 2.4. Активное и индуктивное сопротивления кабелей
  10. воздушных линий и проводов
  11. 2.6. Активные сопротивления контактов и контактных соединений
  12. 2.7. Активные и индуктивные сопротивления трансформаторов тока
  13. автоматических выключателей
  14. и синхронных электродвигателей
  15. 2.10. Параметры асинхронных электродвигателей
  16. 2.11. Расчетные параметры комплексных нагрузок
  17. 2.12. Активное сопротивление дуги в месте КЗ
  18. Расчет токов короткого замыкания (КЗ), пример, методические пособия
  19. Расчет токов короткого замыкания для начинающих электриков

Расчет токов короткого замыкания в электроустановках напряжением до 1000 В (стр. 1 )

Электроснабжение объектов. Часть 2. Расчет токов короткого замыкания в электроустановках до 1000 В. Кабышев А.В.

,

РАСЧЕТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ

В ЭЛЕКТРОУСТАНОВКАХ

НАПРЯЖЕНИЕМ ДО 1000 в

Федеральное агентство по образованию

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Волгоградский государственный технический университет

КАМЫШИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

ВОЛГОГРАДСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

,

РАСЧЕТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ В

ЭЛЕКТРОУСТАНОВКАХ НАПРЯЖЕНИЕМ ДО 1000 в

Учебное пособие

Волгоград

2008

УДК 62

Х 12

Рецензенты: к. т. н. ; Камышинский технический колледж (зав. отделением электрификации и автоматизации сельского хозяйства )

Хавроничев, токов короткого замыкания в электро-установках напряжением до 1000 В: учеб. пособие / , ; ВолгГТУ, Волгоград, 2008. – 68 с.

ISBN 0085-0

Приведены краткие теоретические сведения о расчете тока трехфазного короткого замыкания, а также о расчете токов несимметричных коротких замыканий (однофазного и двухфазного). Рассмотрен расчет сопротивлений различных элементов электроустановки. В соответствии с действующим стандартом даны рекомендации о необходимости учета отдельных элементов электроустановки.

Предназначено в помощь студентам специальности 1004 (код по ОКСО 140212.51) «Электроснабжение промышленных предприятий» при выполнении курсового проекта по дисциплине «Электрические подстанции», а также соответствующих разделов дипломного проекта.

Ил. 30. Табл. 18. Библ.: 4 назв.

Печатается по решению редакционно-издательского совета

Волгоградского государственного технического университета

ISBN 0085-0 © Волгоградский

государственный

технический

университет, 2008

ВВЕДЕНИЕ

При выполнении курсового проекта по дисциплине «Электрические подстанции», а также соответствующих разделов дипломного проекта по специальности 140212.

51 «Электроснабжение промышленных предприятий» (по отраслям) возникает необходимость выбора силового электрооборудования, входящего в состав распределительных устройств напряжением до 1000 В и его проверки на действие тока короткого замыкания.

Электроустановки напряжением до 1000 В получают питание от понижающих трансформаторов мощностью, как правило, не превышающей 1000 кВ×А. При замыкании на стороне низшего напряжения эти трансформаторы существенно ограничивают токи короткого замыкания на стороне высшего напряжения.

Напряжение на зажимах обмотки высшего напряжения при этом изменяется столь незначительно, что его можно считать практически постоянным.

Таким образом, по отношению к электроустановке напряжением до 1000 В систему, питающую понижающий трансформатор, можно рассматривать как систему неограниченной мощности и, следовательно, периодическую составляющую тока короткого замыкания считать в данном случае неизменной по величине в течение всего процесса замыкания.

В установках напряжением до 1000 В активные и реактивные сопротивления вполне соизмеримы. Поэтому учет активных сопротивлений обязателен. Более того, в ряде случаев без особого ущерба для точности расчетов можно пренебречь реактивными сопротивлениями.

Сопротивления короткозамкнутой цепи в установках напряжением до 1000 В, как правило, весьма малы, поэтому строгий учет сопротивлений всех элементов цепи очень важен для правильного определения токов короткого замыкания.

Существенное влияние в этом смысле оказывают не только сопротивление силового трансформатора, но и сопротивления таких элементов, как сборные шины, небольшие отрезки присоединяющих кабелей, трансформаторы тока, токовые катушки и контакты коммутаци – онных аппаратов.

Наконец, заметное влияние на токи короткого замыкания в рассматриваемых установках оказывают различные переходные контакты (соединения шин, зажимов, разъемных контактов аппаратов и т. д.), а также переходное сопротивление непосредственно в месте замыкания.

1. ОБЩИЕ ПОЛОЖЕНИЯ

Настоящее учебное пособие устанавливает общую методику расчета токов в электроустановках переменного тока напряжением до 1 кВ, необходимых для выбора и проверки электрооборудования по условиям короткого замыкания (КЗ), для выбора коммутационных аппаратов, уставок релейной защиты и заземляющих устройств.

Расчету для выбора и проверки электрооборудования по условиям КЗ подлежат:

1) начальное значение периодической составляющей тока КЗ;

2) апериодическая составляющая тока КЗ;

3) ударный ток КЗ;

4) действующее значение периодической составляющей тока КЗ в произвольный момент времени, вплоть до расчетного времени размыкания поврежденной цепи.

Также расчету подлежат максимальное и минимальное значения периодической составляющей тока в месте КЗ в начальный и произвольный момент времени, вплоть до расчетного времени размыкания поврежденной цепи. Для целей выбора заземляющих устройств расчету подлежит значение тока однофазного КЗ.

При расчетах токов КЗ в электроустановках до 1 кВ необходимо учитывать:

1) индуктивные сопротивления всех элементов короткозамкнутой цепи, включая силовые трансформаторы, проводники, трансформаторы тока, реакторы, токовые катушки автоматических выключателей;

2) активные сопротивления элементов короткозамкнутой цепи;

3) активные сопротивления различных контактов и контактных соединений;

4) значения параметров синхронных и асинхронных электродвигателей.

При расчетах токов КЗ рекомендуется учитывать:

1) сопротивление электрической дуги в месте КЗ;

2) изменение активного сопротивления проводников короткозамкнутой цепи вследствие их нагрева при КЗ;

3) влияние комплексной нагрузки (электродвигатели, преобразователи, термические установки, лампы накаливания) на ток КЗ, если номинальный ток электродвигателей нагрузки превышает 1,0 % начального значения периодической составляющей тока КЗ, рассчитанного без учета нагрузки.

При расчетах токов КЗ допускается:

1) максимально упрощать и эквивалентировать всю внешнюю сеть по отношению к месту КЗ и индивидуально учитывать только автономные источники электроэнергии и электродвигатели, непосредственно примыкающие к месту КЗ;

2) не учитывать ток намагничивания трансформаторов;

3) не учитывать насыщение магнитных систем электрических машин;

4) принимать коэффициенты трансформации трансформаторов равными отношению средних номинальных напряжений тех ступеней напряжения сетей, которые связывают трансформаторы;

5) не учитывать влияния асинхронных электродвигателей, если их суммарный номинальный ток не превышает 1,0 % начального значения периодической составляющей тока в месте КЗ, рассчитанного без учета электродвигателей.

Токи КЗ в электроустановках напряжением до 1 кВ рекомендуется рассчитывать в именованных единицах.

При составлении эквивалентных схем замещения параметры элементов исходной расчетной схемы следует приводить к ступени напряжения сети, на которой находится точка КЗ, а активные и индуктивные сопротивления всех элементов схемы замещения выражать в миллиомах.

При расчете токов КЗ в электроустановках, получающих питание непосредственно от сети энергосистемы, допускается считать, что понижающие трансформаторы подключены к источнику неизменного по амплитуде напряжения через эквивалентное индуктивное сопротивление системы. Значение этого сопротивления (хс) в миллиомах, приведенное к ступени низшего напряжения сети, рассчитывают по формуле:

(1)

где – среднее номинальное напряжение сети, подключенной к обмотке низшего напряжения трансформатора, В; – среднее номинальное напряжение сети, к которой подключена обмотка высшего напряжения трансформатора, В; = – действующее значение периодической составляющей тока при трехфазном КЗ у выводов обмотки высшего напряжения трансформатора, кА; Sк – условная мощность КЗ у выводов обмотки высшего напряжения трансформатора, МВ×А.

При отсутствии указанных данных эквивалентное индуктивное сопротивление системы в миллиомах допускается рассчитывать по формуле:

(2)

где – номинальный ток отключения выключателя, установленного на стороне высшего напряжения понижающего трансформатора цепи.

Примечание. В случаях, когда понижающий трансформатор подключен к сети энергосистемы через реактор, воздушную или кабельную линию (длиной более 1 км), необходимо учитывать не только индуктивные, но и активные сопротивления этих элементов.

При расчете токов КЗ в электроустановках с автономными источниками электроэнергии необходимо учитывать значения параметров всех элементов автономной электрической системы, включая автономные источники (синхронные генераторы), распределительную сеть и потребителей.

2. РАСЧЕТ СОПРОТИВЛЕНИЙ РАЗЛИЧНЫХ ЭЛЕМЕНТОВ

ЭЛЕКТРОУСТАНОВКИ

силовых трансформаторов

Активное и индуктивное сопротивления прямой последовательности понижающих трансформаторов (rт, хт) в миллиомах, приведенные к ступени низшего напряжения сети, рассчитывают по формулам:

(3)

(4)

где – номинальная мощность трансформатора, кВ×А; – потери короткого замыкания в трансформаторе, кВт; – номинальное напряжение обмотки низшего напряжения трансформатора, кВ; ик – напряжение короткого замыкания трансформатора, %.

Активные и индуктивные сопротивления нулевой последовательности понижающих трансформаторов, обмотки которых соединены по схеме D/Y0, при расчете КЗ в сети низшего напряжения следует принимать равными соответственно активным и индуктивным сопротивлениям прямой последовательности. При других схемах соединения обмоток трансформаторов активные и индуктивные сопротивления нулевой последовательности необходимо принимать в соответствии с указаниями изготовителей.

2.2. Активное и индуктивное сопротивления реакторов

Активное сопротивление токоограничивающих реакторов (r1p = r2p = r0p) в миллиомах рассчитывают по формуле:

(5)

где DРр. ном – потери активной мощности в фазе реактора при номинальном токе, Вт; Iр. ном – номинальный ток реактора, А.

Индуктивное сопротивление реакторов (x1p = x2p = x0p) в миллиомах принимают таким, которое указал изготовитель, или рассчитывают по формуле:

(6)

где w – угловая частота напряжения сети, рад/с; L – индуктивность катушки трехфазного реактора, Гн; М – взаимная индуктивность между фазами реактора, Гн.

2.3. Активное и индуктивное сопротивления шинопроводов

При определении активного и индуктивного сопротивлений прямой и нулевой последовательностей шинопроводов следует использовать данные завода-изготовителя, эксперимента или применять расчетный метод. Рекомендуемый метод расчета сопротивлений шинопроводов и параметры некоторых комплектных шинопроводов приведены в прилож. А, табл. А-1.

2.4. Активное и индуктивное сопротивления кабелей

Значения параметров прямой (обратной) и нулевой последовательности кабелей, применяемых в электроустановках до 1 кВ, используют такие, которые указаны изготовителем или в прилож. Б.

При определении минимального значения тока КЗ рекомендуется учитывать увеличение активного сопротивления кабеля к моменту отключения цепи вследствие нагревания кабеля током КЗ. Значение активного сопротивления кабеля в миллиомах с учетом нагрева его током КЗ () рассчитывают по формуле:

(7)

где – коэффициент, учитывающий увеличение активного сопротивления кабеля (при приближенных расчетах значение коэффициента допускается принимать равным 1,5); – активное сопротивление кабеля при температуре , равной плюс 20 °С, мОм.

воздушных линий и проводов

Методика расчета параметров воздушных линий и проводов приведена в прилож. В.

2.6. Активные сопротивления контактов и контактных соединений

Переходное сопротивление электрических контактов любого вида следует определять на основании данных экспериментов или с использованием расчетных методик. Данные о контактных соединениях приведены в прилож.

Г. При приближенном учете сопротивлений контактов принимают: rк = 0,1 мОм – для контактных соединений кабелей; rк = 0,01 мОм – для шинопроводов; rк = 1,0 мОм – для коммутационных аппаратов.

2.7. Активные и индуктивные сопротивления трансформаторов тока

При расчете токов КЗ в электроустановках напряжением до 1 кВ следует учитывать как индуктивные, так и активные сопротивления первичных обмоток всех многовитковых измерительных трансформаторов тока, которые имеются в цепи КЗ.

Значения активных и индуктивных сопротивлений нулевой последовательности принимают равными значениям сопротивлений прямой последовательности. Параметры некоторых многовитковых трансформаторов тока приведены в прилож. Д.

Активным и индуктивным сопротивлениями одновитковых трансформаторов (на токи более 500 А) при расчетах токов КЗ можно пренебречь.

автоматических выключателей

Расчеты токов КЗ в электроустановках напряжением до 1 кВ следует вести с учетом индуктивных и активных сопротивлений катушек (расцепителей) максимального тока автоматических выключателей, принимая значения активных и индуктивных сопротивлений нулевой последовательности равными соответствующим сопротивлениям прямой последовательности. Значения сопротивлений катушек расцепителей и контактов некоторых автоматических выключателей приведены в прилож. Е.

и синхронных электродвигателей

При расчете начального значения периодической составляющей тока КЗ автономные источники, а также синхронные электродвигатели следует учитывать сверхпереходным сопротивлением по продольной оси ротора (), а при определении постоянной времени затухания апериодической составляющей тока КЗ – индуктивным сопротивлением для токов обратной последовательности x2 и активным сопротивлением обмотки статора r.

При приближенных расчетах принимают: = 0,15; x2 = ; r = 0,15.

2.10. Параметры асинхронных электродвигателей

При расчетах начального значения периодической составляющей тока КЗ от асинхронных электродвигателей последние следует вводить в схему замещения сверхпереходным индуктивным сопротивлением.

При необходимости проведения уточненных расчетов нужно также учитывать активное сопротивление статора. Значения асинхронных двигателей рекомендуется определять, как указано в прилож. Ж.

При приближенных расчетах принимают: сверхпереходное индуктивное сопротивление асинхронного двигателя = 0,18; активное сопротивление статора асинхронного двигателя = 0,36.

2.11. Расчетные параметры комплексных нагрузок

При расчете токов КЗ от комплексных нагрузок следует учитывать их параметры прямой, обратной и нулевой последовательностей.

Рекомендуемые значения сопротивлений прямой (Z1) и обратной (Z2) последовательностей отдельных элементов комплексной нагрузки приведены в табл. 1.

Значения модулей полных сопротивлений прямой (Z1НГ), обратной (Z2НГ) и нулевой (Z0НГ) последовательностей некоторых узлов нагрузки в зависимости от их состава допускается определять, как указано в прилож. З.

В приближенных расчетах для узлов, содержащих до 70 % асинхронных двигателей, допускается значения модулей полных сопротивлений комплексной нагрузки принимать равными = = 0,4; = 3,0.

Таблица 1

Параметры элементов комплексной нагрузки

Потребители комплексной нагрузкиОбозначения на схемахCos jномЗначения сопротивлений, отн. ед.
Асинхронные электродвигателиАД0,80,07 + j 0,180,07 + j 0,18
Синхронные электродвигателиСД0,90,03 + j 0,160,03 + j 0,16
Лампы накаливанияЛН1,01,01,33
Газоразрядные источники светаЛГ0,850,86 + j 0,530,38 + j 0,24
ПреобразователиП0,90,9 + j 0,441,66 + j 0,81
Электротермические установкиЭУ0,91 + j 0,490,4 + j 0,2

2.12. Активное сопротивление дуги в месте КЗ

При определении минимального значения тока КЗ следует учитывать влияние на ток КЗ активного сопротивления электрической дуги в месте КЗ.

Приближенные значения активного сопротивления дуги приведены в табл. 2.

Для других расчетных условий КЗ значения активного сопротивления дуги допускается рассчитывать по прилож. З.

Методика расчета начального действующего значения периодической составляющей тока КЗ в электроустановках до 1 кВ зависит от способа электроснабжения: от энергосистемы или от автономного источника.

Таблица 2

Значения активного сопротивления дуги

Расчетные условия КЗАктивное сопротивление дуги (rд), мОМ, при КЗ за трансформаторами мощностью, кВ×А
250400630100016002500
КЗ вблизи выводов низшего напряжения трансформатора:
– в разделке кабелей напряжением:
0,4 кВ15107543
0,525 кВ14864,53,52,5
0,69 кВ1275432
– в шинопроводе типа ШМА напряжением:
0,4 кВ643
0,525 кВ53,52,5
0,69 кВ432
КЗ в конце шинопровода типа ШМА длиной 100–150 м напряжением:
0,4 кВ6–85–74–6
0,525 кВ5–74–63–5
0,69 кВ4–63–52–4

При электроснабжении электроустановки от энергосистемы через понижающий трансформатор начальное действующее значение периодической составляющей трехфазного тока КЗ (Iпо) в килоамперах без учета подпитки от электродвигателей рассчитывают по формуле:

Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 5 6

Источник: https://pandia.ru/text/78/446/42582.php

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Электроснабжение объектов. Часть 2. Расчет токов короткого замыкания в электроустановках до 1000 В. Кабышев А.В.

В этой статье мы ниже рассмотривает пример расчет из курсового проекта тока КЗ. Скажем сразу, расчетов токов КЗ целое исскуство, и если Вам необходимо рассчитать токи КЗ для реальных электроустановок, то лучше скачать следующие методические пособия разработанные Петербурским энергетическим университетом повышения квалификации и всё сделать по ним.

И так:

1. И.Л. Небрат. Расчеты токов короткого замыкания в сетях 0,4 кв — скачать;

2.И.Л.Небрат, Полесицкая Т.П. Расчет ТКЗ для РЗ, часть 1 — скачать;

3.И.Л.Небрат, Полесицкая Т.П. Расчет ТКЗ для РЗ, часть 2 — скачать.

Так же полезно будет иметь под рукой программы, которые помогут Вам точно расчитать токи КЗ. Данных программ в настоящее время много и Вы можете найти большое количество различного софта в интернете, на который Вы можете потратить от часа до нескольких дней, чтобы разобраться как в нём работать.

Ниже я выложу перечень программ в файле ворд, в котором указаны производители программ и как и где их можно получить (ссылок на скачивание в файле нет). А также выложу одну программу для расчета токов КЗ в сетях 0.4кВ. Данная программа очень древняя, но и такая же надежная как весь совеский аэрофлот. Работает из под DOSa.

Эмулятор в файле скачивания. И так:

1. Переченьпрограмм расчетов ТКЗ и уставок РЗ (если Вы знаете какие-то другие программы, то пишите на pue8(г а в)mail.ru). Мы их включим в перечень.;

2. Программа для расчета токов КЗ в сетях 0.4 кВ.

Если Вам необходим расчет для курсового проекта или учебного задания, то ниже приведен не большой расчет, который в этом Вам поможет.

В задании к курсовому проекту приводятся данные об эквивалентных параметрах сети со стороны высшего напряжения рабочих трансформаторов СН (ТСН) и со стороны высшего напряжения резервных трансформаторов СН (РТСН).

В соответствии с рис.2.1, приводятся: ток КЗ на ответвлении к ТСН (3) по I , кА при номинальном напряжении генератора Uгн, кВ или эквивалентное сопротивление сети со стороны ВН ТСН ТСН э X , Ом.

Имеет место следующая зависимость:

Рис.2.1. Расчетная схема для определения токов КЗ при расположении точек КЗ на секциях СН 6(10) кВ и 0,4(0,69) кВ.
Для резервных трансформаторов СН задается ток к.з.

на шинах ОРУ в точке включения РТСН (3) по I , кА при среднеэксплуатационном напряжении ОРУ ср U , кВ или эквивалентное сопротивление системы в точке включения РТСН РТСН э Х , Ом:

Учитывается возможность секционирования с помощью токоограничивающих реакторов секций РУСН-6 кВ.

Это дает возможность применить на секциях за реактором более дешевые ячейки КРУ с меньшими токами термической и электродинамической стойкости и меньшим номинальным током отключения, чем на секциях до реактора, и кабели с меньшим сечением токопроводящих жил.

 Расчет ведется по среднеэксплуатационным напряжениям, равным в зависимости от номинального напряжения 1150; 750; 515; 340; 230; 154; 115; 37; 24; 20; 18; 15,75; 13,8; 10,5; 6,3; 3,15; 0,66; 0,525; 0,4; 0,23, и среднеэксплуатационным коэффициентам трансформации.

В учебном пособии расчеты по определению токов КЗ в относительных (базисных) единицах применительно к схеме Ленинградской АЭС с тремя системами напряжения (750, 330, 110 кВ) и напряжением 6,3 кВ проводились с учетом как действительных, так и среднеэксплуатационных коэффициентов трансформации трансформаторов и автотрансформаторов.

Показано, что расчет по среднеэксплуатационным напряжениям не вносит существенных корректировок в уровни токов КЗ.

В то же время требуется серьезная вычислительная работа методом последовательных приближений, чтобы связать уровни напряжения генераторов, значения их реактивных мощностей с учетом коэффициента трансформации АТ связи, рабочих и резервных ТСН и напряжений на приёмных концах линий.

При сокращении числа переключений трансформаторов и АТ связи с РПН из соображений надежности работы блоков задача выбора отпаек РПН становится менее актуальной.

Схемы замещения для точек КЗ на напряжениях 6,3 и 0,4 кВ приведены на рис.2.2.
Все сопротивления приводятся к базисным условиям и выражаются либо в относительных единицах (о.е.) либо в именованных (Ом).

В начале расчета необходимо определиться, в каких единицах будут производиться вычисления, и сохранять данную систему единиц до конца расчетов.

Методики определения токов КЗ с использованием относительных и именованных единиц равноправны.

В работе приводятся методики расчетов в относительных и в именованных единицах, как с учетом действительных коэффициентов трансформации, так и по среднеэксплуатационным напряжениям.

В работе приводятся расчеты как в относительных, так и в именованных единицах для простейших схем 0,4 кВ, где нужно учесть не только индуктивное, но и активное сопротивления.

Рис.2.2. Схема замещения в случае наличия реактора при питании секций 6(10) кВ СН: а – от рабочего ТСН; б – от резервного ТСН Для расчета в относительных единицах задают базисную мощность Sбаз, базисное напряжение Uбаз и вычисляют базисные токи Iбаз.

В качестве базисной целесообразно принять номинальную мощность трансформатора СН: Sбаз = SТСН, МВА. Базисное напряжение принимают, как правило, равным для точек К1, К2 Uбаз1,2 = 6,3 кВ; для точек К3, К4 Uбаз3,4 = 0,4 кВ.

Заметим, что при расчете в относительных единицах можно выбрать любые другие значения Sбаз, Uбаз.

Базисные токи в точках короткого замыкания К1 – К4, кА:

При расчетах в именованных единицах задают только базисное напряжение Uбаз – напряжение той точки, для которой рассчитываются токи КЗ: для точек К1, К2 Uбаз1,2 = 6,3 кВ; для точек К3, К4 Uбаз3,4 = 0,4 кВ. Сопротивления сети в точках включения рабочего хсист1 и резервного хсист2 трансформаторов СН приводятся к базисным условиям по формулам: в относительных единицах:

где uкв-н – напряжение короткого замыкания ТСН между обмоткой ВН и обмотками НН, включенными параллельно, о.е.;

uкн-н – напряжение короткого замыкания ТСН между обмотками НН, приведенное к половинной мощности ТСН, о.е.;
SТСН – номинальная мощность ТСН, МВА.

При использовании справочников для определения напряжения короткого замыкания uкн-н следует обращать внимание на указанный в примечаниях смысл каталожных обозначений.

Если напряжение короткого замыкания uк НН1-НН2 отнесено в каталоге к номинальной мощности трансформатора, то данное uк НН1-НН2 необходимо пересчитать для половинной мощности, разделив на 2. В случае неверной подстановки в формулы (2.5), (2.5′) зачастую сопротивление хв получается отрицательным.

Например, для ТСН марки ТРДНС-63000/35 в табл.3.5 справочника uкв-н = 12,7% и uкн-н = 40% отнесены к полной мощности трансформатора – см. примечание к таблице.

В этом случае в скобках формул (2.5), (2.5′) должно стоять выражение (0,127 – 20,2 ). Например, для РТСН марки ТРДН-32000/150 в табл.3.7 справочника uкв-н = 10,5% и uкн-н = 16,5% отнесены к половинной мощности трансформатора.

При этом в скобках формул (2.5), (2.5′) должно быть (0,105 – 20,165 ). На блоках мощностью до 120 МВт используются двухобмоточные трансформаторы собственных нужд без расщепления.

В этом случае сопротивление ТСН или РТСН вычисляется по формулам:

в относительных единицах:
где uкв-н – напряжение короткого замыкания трансформатора между обмотками высшего и низшего напряжений, о.е.;
Sбаз, SТСН, SРТСН имеют тот же смысл, что и в формулах (2.5), (2.5′), (2.6),(2.6′).

Сопротивление участка магистрали резервного питания:

в относительных единицах:

где Худ – удельное сопротивление МРП, Ом/км; МРП – длина МРП, км;

Uср – среднеэксплуатационное напряжение на первой ступени трансформации, кВ.

Сопротивление трансформатора собственных нужд 6/0,4 кВ:

в относительных единицах: где SТ 6/0,4 – номинальная мощность трансформатора, МВА.

Аналогично рассчитывается сопротивление трансформатора 10,5/0,69 кВ.

Сопротивление одинарных токоограничивающих реакторов Хр задается в Омах и для приведения к базисным условиям используют формулы:

в относительных единицах:
В некоторых каталогах сопротивление токоограничивающих реакторов Хр приводится в процентах и для приведения к базисным условиям используют формулы:

в относительных единицах:

где Iрн – номинальный ток реактора, кА, определяемый по мощности тех электродвигателей, которые предполагается включить за реактором.

Индуктивное сопротивление реактора Хр определяют по допустимому току КЗ за реактором Iп0доп. Значение Iп0доп связано с номинальным током отключения предполагаемых к установке за реактором выключателей (Iп0доп — Iоткл.н). 

Одновременно происходит и снижение теплового импульса тока КЗ за реактором Вдоп, что благоприятно для выбора сечения кабелей по условиям термической стойкости и невозгорания. При определении Iп0доп и Вдоп следует учитывать, что реактор не в состоянии ограничить подпитку точки КЗ от двигателей за реактором Iпд0 и ухудшает условия их пуска и самозапуска, т.е.

где Iпс – периодическая составляющая тока подпитки точки КЗ от ветви, в которую предполагается включить реактор;

Iпд0 – ток подпитки от двигателей за реактором.
Потеря напряжения U в одинарном реакторе при протекании токов рабочего режима I:

Сопротивление эквивалентного двигателя на каждой секции определяется через его мощность или через коэффициент загрузки Кзгр и номинальную мощность трансформатора СН. При отсутствии токоограничивающего секционного реактора и использовании на первой ступени трансформатора с расщепленными обмотками имеем: 

В случае различия расчетных мощностей двигательной нагрузки Sд1, Sд2, в дальнейшем расчете сопротивления эквивалентного двигателя будет участвовать максимальная из них, вне зависимости от способа питания секций 6,3 кВ (от рабочего и резервного ТСН).

При использовании секционного токоограничивающего реактора определяется его проходная мощность Sр по формуле (2.12) и далее – мощности двигателей:

при использовании РТСН для замены рабочего ТСН энергоблока, работающего на мощности. Наличие предварительной нагрузки РТСН характерно для блоков генератор-трансформатор без генераторных выключателей.

При наличии выключателя в цепи генераторного токопровода, что предусмотрено действующими нормами технологического проектирования, пуск и останов энергоблока обычно осуществляется от рабочего ТСН и надобности в использовании РТСН в этих режимах не возникает.

Поэтому для схем с генераторными выключателями можно принимать ТСН згр к = РТСН згр к = 0,7. При отсутствии выключателей в цепи генераторного токопровода РТСН згр к возрастает.

Наличие секционного токоограничивающего реактора приводит к изменению распределения двигателей по сравнению с вариантом без реактора и к изменению доли подпитки ими точек КЗ до и после реактора. При КЗ в точке К2 не следует учитывать подпитку от двигателей, включенных до реактора, а при КЗ в точке К1 не следует учитывать подпитку от двигателей, включенных за реактором.

По вычисленным мощностям двигателей Sд определяют приведенные сопротивления двигательной нагрузки в вариантах при отсутствии реактора и при его наличии:

в относительных единицах:

Источник: https://pue8.ru/elektrotekhnik/1-raschet-tokov-kz.html

Расчет токов короткого замыкания для начинающих электриков

Электроснабжение объектов. Часть 2. Расчет токов короткого замыкания в электроустановках до 1000 В. Кабышев А.В.

При проектировании любой энергетической системы специально подготовленные инженеры электрики с помощью технических справочников, таблиц, графиков и компьютерных программ выполняют ее анализ на работу схемы в различных режимах, включая:

1. холостой ход;

2. номинальную нагрузку;

3. аварийные ситуации.

Особую опасность представляет третий случай, когда в сети возникают неисправности, способные повредить оборудование. Чаще всего они связаны с «металлическим» закорачиванием питающей цепи, когда между разными потенциалами подводимого напряжения подключаются случайным образом электрические сопротивления размерностью в доли Ома.

Такие режимы называют токами коротких замыканий или сокращенно «КЗ». Они возникают при:

  • сбоях в работе автоматики и защит;

  • ошибках обслуживающего персонала;

  • повреждениях оборудования из-за технического старения;

  • стихийных воздействиях природных явлений;

  • диверсиях или действиях вандалов.

Токи коротких замыканий по своей величине значительно превышают номинальные нагрузки, под которые создается электрическая схема. Поэтому они просто выжигают слабые места в оборудовании, разрушают его, вызывают пожары.

Кроме термического разрушения они еще обладают динамическим действием. Его проявление хорошо показывает видеоролик:

Чтобы при эксплуатации исключить развитие подобных аварий с ними начинают бороться еще на стадии создания проекта электрического оборудования. Для этого теоретически вычисляют возможности возникновения токов коротких замыканий и их величины.

Эти данные используются для дальнейшего создания проекта и выбора силовых элементов и защитных устройств схемы. С ними же продолжают постоянно работать и при эксплуатации оборудования.

Токи возможных коротких замыканий рассчитывают теоретическими методами с разной степенью точности, допустимой для надежного создания защит.

Какие электрические процессы заложены в основу расчета токов короткого замыкания

Первоначально заострим внимание на том, что любой вид приложенного напряжения, включая постоянное, переменное синусоидальное, импульсное или любое другое случайное создает токи аварий, которые повторяют образ этой формы или изменяют ее в зависимости от приложенного сопротивления и действия побочных факторов. Все это приходится предусматривать проектировщикам и учитывать в своих расчетах.

Оценку возникновения м действия токов коротких замыканий позволяют выполнить:

  • закон Ома;

  • величина силовой характеристики мощности, приложенной от источника напряжения;

  • структура используемой электрической схемы электроустановки;

  • значение полного приложенного сопротивления к источнику.

Действие закона Ома

За основу расчета коротких замыканий взят принцип, определяющий, что силу тока можно вычислить по величине приложенного напряжения, если поделить ее на значение подключенного сопротивления.

Он же действует и при расчете номинальных нагрузок. Разница лишь в том, что:

  • во время оптимальной работы электрической схемы напряжение и сопротивление практически стабилизированы и изменяются незначительно в пределах рабочих технических нормативов;

  • при авариях процесс происходит стихийно случайным образом. Но его можно предусмотреть, просчитать разработанными методиками.

Мощность источника напряжения

С ее помощью оценивают силовую энергетическую возможность совершения разрушительной работы токами коротких замыканий, анализируют длительность их протекания, величину.

Рассмотрим пример, когда один и тот же кусок медного провода сечением полтора квадратных мм и длиной в полметра вначале подключили напрямую на клеммы батарейки «Крона», а через некоторое время вставили в контакты фазы и нуля бытовой розетки.

В первом случае через провод и источник напряжения потечет ток короткого замыкания, который разогреет батарейку до такого состояния, что повредит ее работоспособность. Мощности источника не хватит на то, чтобы сжечь подключенную перемычку и разорвать цепь.

Во втором случае сработают автоматические защиты. Допустим, что они все неисправны и заклинили. Тогда ток короткого замыкания пройдет через домашнюю проводку, достигнет вводного щитка в квартиру, подъезд, здание и по кабельной или воздушной линии электропередач дойдет до питающей трансформаторной подстанции.

В итоге к обмотке трансформатора подключается довольно протяженная цепь с большим количеством проводов, кабелей и мест их соединения. Они значительно увеличат электрическое сопротивление нашей закоротки. Но даже в этом случае высока вероятность того, что она не выдержит приложенной мощности и просто сгорит.

Конфигурация электрической схемы

При питании потребителей к ним подводится напряжение разными способами, например:

  • через потенциалы плюсового и минусового выводов источника постоянного напряжения;

  • фазой и нулем однофазной бытовой сети 220 вольт;

  • трехфазной схемой 0,4 кВ.

В каждом из этих случаев могут произойти нарушения изоляции в различных местах, что приведет к протеканию через них токов короткого замыкания. Только для трехфазной цепи переменного тока возможны короткие замыкания между:

  • всеми тремя фазами одновременно — называется трехфазным;

  • двумя любыми фазами между собой — междуфазное;

  • любой фазой и нулем — однофазное;

  • фазой и землей — однофазное на землю;

  • двумя фазами и землей — двухфазное на землю;

  • тремя фазами и землей — трехфазное на землю.

При создании проекта электроснабжения оборудования все эти режимы требуется просчитать и учесть.

Влияние электрического сопротивления цепи

Протяженность магистрали от источника напряжения до места образования короткого замыкания имеет определенное электрическое сопротивление. Его величина ограничивает токи короткого замыкания.

Наличие обмоток трансформаторов, дросселей, катушек, обкладок конденсаторов добавляют индуктивные и емкостные сопротивления, формирующие апериодические составляющие, искажающие симметричную форму основных гармоник.

Существующие методики расчета токов короткого замыкания позволяют их вычислить с достаточной для практики точностью по заранее подготовленной информации. Реальное электрическое сопротивление уже собранной схемы можно измерить по методике петли «фаза-ноль». Оно позволяет уточнить расчет, внести коррективы в выбор защит.

Основные документы по расчету токов коротких замыканий

1. Методика выполнения расчета токов КЗ

Она хорошо изложена в книге А. В. Беляева “Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ”, выпущенной Энергоатомиздат в 1988 году. Информация занимает 171 страницу.

Книга предоставляет:

  • последовательность расчета токов КЗ;

  • учет токоограничивающего действия электрической дуги на месте образования повреждения;

  • принципы выбора защитной аппаратуры по значениям рассчитанных токов.

В книге публикуется справочная информация по:

  • автоматическим выключателям и предохранителям с анализом характеристик их защитных свойств;

  • выбору кабелей и аппаратуры, включая установки защиты электродвигателей, силовых сборок, вводных устройств генераторов и трансформаторов;

  • недостаткам защит отдельных видов автоматических выключателей;

  • особенностям применения выносных релейных защит;

  • примерам решения проектных задач.

Скачать эту книгу можно здесь: Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ

2. Руководящие указания РД 153—34.0—20.527—98

Этот документ определяет:

  • методики расчетов токов КЗ симметричных и несимметричных режимов в электроустановках с напряжением до и выше 1 кВ;

  • способы проверок электрических аппаратов и проводников на термическую и электродинамическую стойкость;

  • методы испытания коммутационной способности электрических аппаратов.

Указания не охватывают вопросы расчета токов КЗ применительно к устройствам РЗА со специфическими условиями эксплуатации.

Скачать их можно здесь: Руководящие указания по расчету токов КЗ

3. ГОСТ 28249-93

Документ описывает короткие замыкания, возникающие в электроустановках переменного тока и методику их расчета для систем с напряжением до 1 кВ. Он действует с 1 января 1995 года на территориях Беларуси, Кыргызстана. Молдовы, России, Таджикистана, Туркменистана и Украины.

Государственный стандарт определяет общие методы расчетов токов КЗ в начальный и любой произвольный временной момент для электроустановок с синхронными и асинхронными машинами, реакторами и трансформаторами, воздушными и кабельными ЛЭП, шинопроводами, узлами сложной комплексной нагрузки.

Технические нормативы проектирования электроустановок определены действующими государственными стандартами и согласованы Межгосударственным Советом по вопросам стандартизации, метрологии, сертификации.

Скачать ГОСТ 28249-93 (2003). Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ можно здесь: ГОСТ по расчету токов КЗ

Очередность действий проектировщика для расчета токов короткого замыкания

Первоначально следует подготовить необходимые для анализа сведения, а затем провести из расчет. После монтажа оборудования к процессе ввода его в работу и при эксплуатации проверяется правильность выбора и работоспособность защит.

Сбор исходных данных

Любую схему можно привести к упрощенному виду, когда она состоит из двух частей:

1. источника напряжения. Для сети 0,4 кВ его роль исполняет вторичная обмотка силового трансформатора;

2. питающей линии электропередачи.

Под них собираются необходимые характеристики.

Данные трансформатора для расчета токов КЗ

Необходимо выяснить:

  • величину напряжения короткого замыкания (%) — Uкз;

  • потери короткого замыкания (кВт) — Рк;

  • номинальные напряжения на обмотках высокой и низкой стороны (кВ. В) — Uвн, Uнн;

  • фазное напряжение на обмотке низкой стороны (В) — Еф;

  • номинальную мощность (кВА) — Sнт;

  • полное сопротивление током однофазного КЗ (мОм) — Zт.

Данные питающей линии для расчета токов КЗ

К ним относятся:

  • марки и количество кабелей с указанием материала и сечения жил;

  • общая протяженность трассы (м) — L;

  • индуктивное сопротивление (мОм/м) — X0;

  • полное сопротивление для петли фаза-ноль (мОм/м) — Zпт.

Эти сведения для трансформатора и линии сосредоточены в справочниках. Там же берут ударный коэффициент Куд.

Последовательность расчета

По найденным характеристикам вычисляют для:

  • трансформатора — активное и индуктивное сопротивление (мОм) — Rт, Хт;

  • линии — активное, индуктивное и полное сопротивление (мОм).

Эти данные позволяют рассчитать общее активное и индуктивное сопротивление (мОм). А на их основе можно определить полное сопротивление схемы (мОм) и токи:

  • трехфазного замыкания и ударный (кА);

  • однофазного КЗ (кА).

По величинам последних вычисленных токов и подбирают автоматические выключатели и другие защитные устройства для потребителей.

Расчет токов короткого замыкания проектировщики могут выполнять вручную по формулам, справочным таблицам и графикам или с помощью специальных компьютерных программ.

На реальном энергетическом оборудовании, введенном в эксплуатацию, все токи, включая номинальные и коротких замыканий, записываются автоматическими осциллографами.

Такие осциллограммы позволяют анализировать ход протекания аварийных режимов, правильность работы силового оборудования и защитных устройств. По ним принимают действенные меры для повышения надежности работы потребителей электрической схемы.

Источник: http://electrik.info/main/school/1147-raschet-tokov-kz.html

Biz-books
Добавить комментарий