Через какое время после начала движения нормальное ускорение будет

Ускорение. Нормальная и тангенциальная составляющие ускорения. урок. Физика 11 Класс

Через какое время после начала движения нормальное ускорение будет

Механическое движение по характеру подразделяется на поступательное, вращательное и колебательное; по виду траектории – прямолинейное и криволинейное. Также механическое движение можно подразделять по характеру изменения скорости.

Физическая величина, которая определяет быстроту изменения скорости, называется ускорением.

Математически ускорение определяется отношением изменения скорости к промежутку времени, за которое оно произошло (производная от скорости по времени): , где  – ускорение;  – изменение скорости;  – промежуток времени, за которое произошло изменение скорости;  – производная скорости по времени.

Так как скорость – величина векторная, то она может меняться по модулю и направлению, поэтому ускорение имеет две естественные составляющие: тангенциальную (параллельную вектору скорости) и нормальную (перпендикулярную вектору скорости).

, где  – полное ускорение;  – тангенциальная составляющая ускорения;  – нормальная составляющая ускорения (см. рис. 1).

Рис. 1. Тангенциальная и нормальная составляющие полного ускорения

Тангенциальная составляющая ускорения характеризует быстроту изменения величины (модуля) скорости. Тангенциальное ускорение всегда коллинеарно скорости.

1) Если тангенциальная составляющая ускорения сонаправлена со скоростью, то движение будет ускоренное (см. рис. 2).

Рис. 2. Тангенциальная составляющая ускорения сонаправлена со скоростью

2) Если тангенциальная составляющая ускорения противонаправлена скорости, то движение будет замедленным (см. рис. 3).

Рис. 3. Тангенциальная составляющая ускорения противонаправлена скорости

Нормальная составляющая ускорения характеризует быстроту изменения скорости по направлению. Нормальное ускорение всегда перпендикулярно скорости и направлено к центру по радиусу траектории, по которой движется тело (см. рис. 4).

Рис. 4. Направление нормального ускорения

Величина нормального ускорения связана с радиусом траектории и со скоростью движения следующим соотношением:

При прямолинейном движении тело имеет только тангенциальное ускорение. Нормальное ускорение отсутствует, так как скорость тела по направлению остаётся неизменной (см. рис. 5).

Рис. 5. Прямолинейное движение

При криволинейном движении, как правило, тело имеет тангенциальную и нормальную составляющую ускорения (см. рис. 6).

Рис. 6. Криволинейное движение

Рассмотрим движение тела, брошенного под углом к горизонту (см. рис. 7). Найдём составляющие ускорения в тот момент, когда скорость тела направлена под углом  к горизонту.

Рис. 7. Траектория движения тела

Касательная к траектории в точке A – это направление скорости . Ускорение тела, брошенного под углом к горизонту, всегда равно ускорению свободного падения: .

Спроецируем данное ускорение на две взаимно перпендикулярные оси, одна из которых перпендикулярна скорости, другая направлена вдоль скорости.

Рис. 8. Проекции ускорения

На рисунке видно, что тангенциальная составляющая ускорения направлена против скорости, то есть скорость тела в данный момент уменьшается (см. рис. 8). Нормальная составляющая ускорения направлена перпендикулярно скорости, следовательно, скорость в следующий момент наклонится в сторону .

Величины составляющих ускорения находим геометрически.

Рис. 9. Геометрическое определение величины составляющих ускорения

Угол A в треугольнике разложения на составляющие (треугольник выделен жёлтым на рисунке) имеет взаимно перпендикулярные стороны с углом  (см. рис. 9), поэтому .

Следовательно,  тангенциальная составляющая равна: .

Нормальная составляющая ускорения равна: .

Обод радиусом 1 метр катится по горизонтальной поверхности со скоростью 10 м/с. Найти радиус траектории точки поверхности обода при прохождении наивысшего положения.

Дано: ; .

Найти: .

Решение

Рис. 10. Иллюстрация к задаче

На рисунке изображён обод, который катится по горизонтальной поверхности со скоростью  (см. рис. 10). Точка A – точка касания обода горизонтальной поверхности, точкаB – наивысшая точка в начальный момент времени. Точка A будет перемещаться по траектории, которая обозначена жёлтым цветом, она называется циклоидой. Эта точка вновь коснётся поверхности, пройдя путь, равный длине траектории: .

Скорость точки A относительно горизонтальной поверхности при движении обода без проскальзывания равна нулю.

Это объясняется тем, что она движется вместе с ободом по горизонтали со скоростью  и относительно центра обода совершает движение по окружности со скоростью .

В точке A эти скорости будут противонаправлены: . Следовательно, скорость движения по окружности и скорость движения центра обода равны: .

Скорости точек в верхней части обода равны: . Эта скорость будет направлена по горизонтали в сторону движения обода.

С центром обода у всех точек, лежащих на её поверхности, связано нормальное ускорение, так как оно направлено перпендикулярно скорости движения точки по окружности в любой момент времени.

Ускорение остаётся неизменным для всех точек поверхности обода, так как при переходе к системе отсчёта, связанной с Землёй, центр обода движется  равномерно: .

Тогда для точки  получается следующее соотношение: , где r – искомый радиус.

В этой задаче заданное значение начальной скорости было лишним. Избыточные данные часто включают в задания ЕГЭ по физике.

Ответ: .

После удара футбольный мяч за 2 с пролетел 40 м и упал на землю. Чему равен радиус траектории мяча в верхней точке траектории?

Дано: ; ; .

Найти: .

Решение

Рис. 11. Иллюстрация к задаче

На рисунке изображена траектория полёта мяча (см. рис. 11). Точка A – верхняя точка траектории, скорость мяча в которой . Ускорение g в верхней точке направлено вниз. Очевидно, что это нормальная составляющая ускорения, так как она направлена перпендикулярно скорости: .

Скорость в точке A – это горизонтальная составляющая скорости, которая в процессе всего движения остаётся неизменной. Поэтому скорость в точке A равна отношению всего пути, пройденного по горизонтали, ко времени: .

Следовательно, радиус траектории в верхней точке равен: .

Ответ: .

Сведения об ускорении необходимы для того, чтобы найти закон изменения скорости от времени. Например, зависимость скорости от времени находится как неопределённый интеграл от ускорения по времени: , где C – постоянная интегрирования.

При равноускоренном движении  постоянное число выносится за знак интеграла, следовательно, получается закон изменения скорости: .

При  скорость равна начальной скорости, следовательно, C – это начальная скорость: . Отсюда получается закон изменения скорости при равнопеременном прямолинейном движении: .

Домашнее задание

  1. Вопросы в конце параграфа 13 (стр. 46); – Касьянов В.А. Физика. 10 кл. (см. список рекомендованной литературы) (Источник)
  2. Камень брошен со скоростью 20 м/c под углом  к горизонту. Определить радиус кривизны R его траектории: в верхней точке, в момент падения на Землю.
  3. Тело брошено со скоростью  под углом  к горизонту. Найти нормальное  и тангенциальное  ускорения тела через время  после начала движения.

Список рекомендованной литературы

  1. Касьянов В.А. Физика. 10 кл.: Учеб. для общеобразоват. учреждений. – М.: Дрофа, 2000.
  2. Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. Физика 10. – М.: Просвещение, 2008.
  3. А. П. Рымкевич. Физика. Задачник 10-11. – М.: Дрофа, 2006.
  4. Орлов В.А., Демидова М.Ю., Никифоров Г.Г., Ханнанов Н.К. Оптимальный банк заданий для подготовки к ЕГЭ. Единый государственный экзамен 2015. Физика. Учебное пособие. – М.: Интеллект-Центр, 2015.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал Distphysics.blogspot.com (Источник).
  2. Интернет-портал Gym1belovo.smartlearn.ru (Источник).
  3. Интернет-портал Studopedia.info (Источник).

Источник: https://interneturok.ru/lesson/physics/11-klass/podgotovka-k-ege/uskorenie-normalnaya-i-tangentsialnaya-sostavlyayuschie-uskoreniya

Ускорение

Через какое время после начала движения нормальное ускорение будет

Скачать все статьи раздела КИНЕМАТИКА

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно.Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится.

Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление».

Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

Среднее ускорение

Среднее ускорение> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где – вектор ускорения.

Направление вектора ускорения совпадает с направлением изменения скорости Δ = – 0(здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость 0. В момент времени t2 тело имеет скорость . Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = – 0. Тогда определить ускорение можно так:

Рис. 1.8. Среднее ускорение.

В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с2, то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Мгновенное ускорение

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями аХ, aY, aZ).

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то естьv2 > v1а направление вектора ускорения совпадает с вектором скорости 2.

Если скорость тела по модулю уменьшается, то есть v2 < v1то направление вектора ускорения противоположно направлению вектора скорости 2. Иначе говоря, в данном случае происходит замедление движения, при этом ускорение будет отрицательным (а < 0). На рис. 1.9 показано направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

Тангенциальное ускорение

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела.

То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n.

Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Направление полного ускорения также определяется правилом сложения векторов:

= τ + n

Источник: http://www.av-physics.narod.ru/mechanics/acceleration.htm

Примеры решения задач

Через какое время после начала движения нормальное ускорение будет

Примеры решения задач

Задача 1

Зависимость пройденного телом пути S от времени t даётся уравнением S=A+Bt+Ct2+Dt3, где С=0,14 , D=0,01 . Через какое время после начала движения ускорение тела будет равно 1 ? Чему равно среднее ускорение тела за время от t = 0 до t = 1 ?

Решение

Мгновенное ускорение тела в момент времени t можно найти как вторую производную от пути:

a =  = (B+2Ct+3Dt2) = 2C+6Dt.

Надо определить значение t, при котором a = 1 .

Получим: t = .

Подставив численные значения, получим:

t =  = 12 с.

Чтобы найти среднее ускорение за промежуток времени от t1 до t2, надо определить величины скорости в момент времени t1 и t2 и их разность разделить на t2 – t1:

aср = .

Скорость находим как производную пути по времени:

υ = B+2Ct+3Dt2,

υ1 = B+2Ct1+3Dt12,

υ2 = B+2Ct2+3Dt22.

Разность скоростей:

υ2 – υ1 = 2С(t2 – t1) + 3D(t22 – t12) = (t2 – t1)[2С +3D(t2+t1)],

подставляем в формулу для среднего ускорения:

aср =  = 2С+3D(t2+t1).

Подставив численные значения, получим:

aср = 0,28 + 3.0,01.1с = 0,31.

Задача 2

Тело брошено со скоростью υ0 = 14,7 , под углом α = 30о к горизонту. Найти нормальное и тангенциальное ускорения тела через t= 1,25 с после начала движения, а также радиус кривизны траектории в данный момент времени. Сопротивление воздуха не учитывать.

Решение

Полным ускорением является ускорение свободного падения . Оно раскладывается на тангенциальную и нормальную составляющие. Если горизонтальную ось обозначить x, а вертикальную y, то g направленно по оси y, aτ– по касательной к траектории, а an – по нормали к ней.

Полная скорость тела направлена по касательной к траектории, её можно разложить на горизонтальную составляющую–υx и вертикальную составляющую – υy.

Треугольники скоростей и ускорений прямоугольные и угол между υу и υ такой же, как и между aτ и g (так как aτ и υ направлены по касательной к траектории, а υy и g – по оси y).

Таким образом, чтобы найти an и aτ, нужно определить в данный момент времени υx,  υу, υ.

υx = υ0 cos α = const,

υ у = – υ0 sin α + gt

(так как мы выбрали направление оси y вниз),

υ = .

Из подобия треугольников имеем: 

 = ,  = ,

отсюда aτ = g , an = g .

Радиус кривизны траектории определяется из условия:

an = ,

значит R =  = .

Подставив численные значения, получим:

aτ =  = 3,55 ,

an =  = 9,15 ,

R =  = 10 м.

Задача 3

Колесо, вращаясь равнозамедленно, при торможении уменьшило свою скорость за 1 мин с 300 об/мин до 180 об/мин. Найти угловое ускорение колеса и число оборотов, сделанных им за это время.

Решение

Запишем кинематические соотношения для вращательного движения: ω = ω0 – ε t, φ = ω0t – ε .

В условии задана не угловая скорость ω, а частота вращения ν, ω = 2πν, φ = 2πΝ.

Подставляем эти соотношения в уравнения:

2πν = 2πν0 – ε t.

Отсюда  ε = ,

2πΝ = 2π ν0t – ε = 2πν0t – 2π (ν0–ν) = 2π (ν0+ν),

или N = (ν0+ν).

Подставив числовые значения, найдём:

ε = 750 мин -2 = 0,208 с -2,

N = 240 оборотов.

Задача 4

Найти угловое ускорение колеса, если известно, что через 2 с после начала равноускоренного движения вектор полного ускорения точки, лежащей на ободе, составляет угол 60о с направлением линейной скорости этой точки.

 Решение

Скорость точки направлена по касательной к траектории, т. е. к окружности. По касательной направлено и тангенциальное ускорение. Значит, угол между полным ускорением и тангенциальным ускорением равен углу между ускорением и скоростью.

­ На чертеже видно, что an = aτ tg α. (1)

Выражаем an и aτ через угловые параметры движения:

an = ω2R, aτ = εR,

и подставляем в (1)

 ω2R = ε R tg α. (2)

При нулевой начальной скорости

 ω = ε t.

Подставляем в (2):

ε2t2 = ε tg α,

ε =  = 0,43 с-2.

2. 1. Ракета, масса которой в начальный момент времени М = 2 кг, запущена вертикально вверх. Относительная скорость выхода продуктов сгорания u = 150 м/с, расход горючего ? = 0,2 кг/с. Пренебрегая сопротивлением воздуха, определить ускорение a ракеты через t = 3 c после начала ее движения. Поле силы тяжести считать однородным. Ответ: 11,6 м/с2.

Ланшафтный дизайн

Источник: http://kursmt.ru/amplituda/termodin33.htm

§ 1.28. Угловая скорость и угловое ускорение

Через какое время после начала движения нормальное ускорение будет

  • При движении точки по окружности радиус R, очевидно, — постоянная величина. Это позволяет ввести новые величины, наилучшим образом описывающие данное движение: положение характеризовать углом, а вместо обычных скоростей и ускорений ввести угловую скорость и угловое ускорение.

Угловая скорость

Проведем координатную ось X через центр окружности (начало координат), вдоль которой движется точка (рис. 1.86). Тогда положение точки А на окружности в любой момент времени однозначно определяется углом φ между осью X и радиусом-вектором , проведенным из центра окружности к движущейся точке. Углы будем выражать в радианах(1).

Рис. 1.86

При движении точки угол φ изменяется. Обозначим изменение угла за время Δt через Δφ. Для нахождения положения точки в любой момент времени надо знать угол φ0 в начальный момент времени t0 и определить, на сколько изменился угол за время движения (рис. 1.87):

φ = φ0 + Δφ.       (1.28.1)

Рис. 1.87

Пусть точка движется по окружности с постоянной по модулю скоростью. Тогда за любые равные промежутки времени радиус-вектор поворачивается на одинаковые углы.

Быстрота обращения точки определяется углом поворота радиуса-вектора за данный интервал времени.

Например, если радиус-вектор точки за каждую секунду поворачивается на угол 90° = , а другой точки — на угол 45 = , то мы говорим, что первая точка обращается быстрее второй в два раза.

Если при равномерном обращении за время Δt радиус-вектор повернулся на угол Δφ, то быстрота обращения определится углом поворота в единицу времени. Быстроту обращения характеризуют угловой скоростью.

Угловой скоростью при равномерном движении точки по окружности называется отношение угла Δφ поворота радиуса-вектора к промежутку времени Δt, за который этот поворот произошел.

Обозначим угловую скорость греческой буквой ω (омега). Тогда по определению(2)

В СИ(3) угловая скорость выражается в радианах в секунду (рад/с).

Радиан в секунду равен угловой скорости равномерно обращающейся точки, при которой за время 1 с радиус-вектор этой точки поворачивается на угол 1 рад.

Например, угловая скорость точки земной поверхности равна 0,0000727 рад/с, а точильного диска более 100 рад/с.

Угловую скорость можно выразить через частоту обращения, т. е. число оборотов за 1с. Если точка делает п оборотов в секунду, то время одного оборота равно .

Это время называют периодом обращенияи обозначают буквой Т. Таким образом, частота и период обращения связаны следующим соотношением:

T = .       (1.28.3)

Полному обороту точки на окружности соответствует угол Δφ = 2π. Поэтому, согласно формуле (1.28.2),

Частота обращения точек рабочих колес мощных гидротурбин составляет 1—10 с-1, винта вертолета — 4—6 с-1, ротора газовой турбины — 200—300 с-1.

Если при равномерном обращении точки угловая скорость известна, то можно найти изменение угла поворота Δφ за время Δt. Оно равно Δφ = ωΔt. С учетом этого формула (1.28.1) примет вид: φ = φ0 + ωΔt. Приняв начальный момент времени t0 равным нулю, получим, что Δt = t – t0 = t. Тогда угол поворота равен

По этой формуле можно найти положение точки на окружности в любой момент времени.

Угловое ускорение

В случае переменной угловой скорости вводится новая физическая величина, характеризующая быстроту ее изменения, — угловое ускорение:

Угловое ускорение равно производной угловой скорости по времени. Если β = const, то ω(t) = ω0 + β(t – t0), где ω0 — угловая скорость в начальный момент времени t0. При t0 = 0

Эта формула подобна формуле проекции скорости vx = v0x + axt при прямолинейном движении точки. Соответственно угол поворота

Эту формулу можно получить точно таким же способом, как и уравнение координаты при прямолинейном движении х =

Связь между линейной и угловой скоростями

Скорость точки, движущейся по окружности, часто называют линейной скоростью, чтобы подчеркнуть ее отличие от угловой скорости. Между линейной скоростью точки, обращающейся по окружности, и ее угловой скоростью существует связь.

При равномерном движении точки по любой траектории модуль скорости равен отношению пути s ко времени Δt, за которое этот путь пройден. Точка А, движущаяся по окружноcти радиусом R, за время Δt проходит путь, равный длине дуги (рис. 1.88): s = = ΔφR.

Модуль линейной скорости движения

Рис. 1.88

Итак, модуль линейной скорости точки, движущейся по окружности, равен произведению угловой скорости на радиус окружности:

Эта формула справедлива как для равномерного, так и для неравномерного движения точки по окружности.

Из выражения (1.28.9) видно, что чем больше радиус окружности, тем больше линейная скорость точки. Для точек земного экватора v = 463 м/с, а на широте Санкт-Петербурга — 233 м/с. На полюсах Земли v = 0.

Модуль ускорения точки, движущейся равномерно по окружности (центростремительное, или нормальное, ускорение) можно выразить через угловую скорость тела и радиус окружности. Так как а = = и v = ωR, то

Чем больше радиус окружности, тем большее по модулю ускорение имеет точка при заданной угловой скорости. Ускорение любой точки поверхности Земли на экваторе составляет 3,4 см/с2.

Связь линейного ускорения с угловым

С изменением угловой скорости точки меняется и ее линейная скорость. Нормальное ускорение связано согласно формуле (1.28.10) с угловой скоростью и не зависит, следовательно, от углового ускорения. Но тангенциальное ускорение, определяемое формулой (1.27.4), выражается через угловое ускорение:

Мы научились полностью описывать движение точки по окружности. При фиксированном радиусе окружности модуль скорости (линейная скорость) пропорционален угловой скорости, а нормальное ускорение пропорционально ее квадрату. Тангенциальное ускорение пропорционально угловому ускорению.

Упражнение 5

  1. Поезд движется по закруглению радиусом 200 м со скоростью 36 км/ч. Найдите модуль нормального ускорения.
  2. Тело брошено с поверхности Земли под углом 60° к горизонту. Модуль начальной скорости равен 20 м/с.

    Чему равен радиус кривизны траектории в точке максимального подъема?

  3. Определите радиус кривизны траектории снаряда в момент вылета из орудия, если модуль скорости снаряда равен 1 км/с, а скорость составляет угол 60° с горизонтом.
  4. Снаряд вылетает из орудия под углом 45° к горизонту.

    Чему равна дальность полета снаряда, если радиус кривизны траектории в точке максимального подъема равен 15 км?

  5. Сферический резервуар, стоящий на земле, имеет радиус R.

    При какой наименьшей скорости камень, брошенный с поверхности Земли, может перелететь через резервуар, коснувшись его вершины? Под каким углом к горизонту должен быть при этом брошен камень?

  6. Въезд на один из самых высоких в Японии мостов имеет форму винтовой линии, обвивающей цилиндр радиусом r. Полотно дороги составляет угол α с горизонтальной плоскостью.

    Найдите модуль ускорения автомобиля, движущегося по въезду с постоянной по модулю скоростью v.

  7. Точка начинает двигаться равноускоренно по окружности радиусом 1 м и за 10 с проходит путь 50 м.

    Чему равно нормальное ускорение точки через 5 с после начала движения?

  1. Поезд въезжает на закругленный участок пути с начальной скоростью 54 км/ч и проходит путь 600 м за 30 с. Радиус закругления равен 1 км. Определите модуль скорости и полное ускорение поезда в конце этого пути, считая тангенциальное ускорение постоянным по модулю.

  2. Груз Р начинает опускаться с постоянным ускорением а = 2 м/с2 и приводит в движение ступенчатый шкив радиусами г = 0,25 м и R = 0,50 м (рис. 1.89). Какое ускорение а1, будет иметь точка М через t = 0,50 с после начала движения?

    Рис. 1.89

  3. Маховик приобрел начальную угловую скорость ω = 2π рад/с. Сделав 10 оборотов, он вследствие трения в подшипниках остановился.

    Найдите угловое ускорение маховика, считая его постоянным.

  4. Маховое колесо радиусом R = 1 м начинает движение из состояния покоя равноускоренно. Через t1 = 10 с точка, лежащая на его ободе, приобретает скорость v1 = 100 м/с. Найдите скорость, а также нормальное, касательное и полное ускорения этой точки в момент времени t2 = 15 с.
  5. Шкив радиусом R = 20 см начинает вращаться с угловым ускорением β = 3 рад/с2. Через какое время точка, лежащая на его ободе, будет иметь ускорение а = 75 см/с2?
  6. Точка начинает обращаться по окружности с постоянным ускорением β = 0,04 рад/с2. Через какое время вектор ее ускорения будет составлять с вектором скорости угол а = 45°?

(1) Напомним, что радиан равен центральному углу, опирающемуся на дугу, длина которой равна радиусу окружности. 1 рад приблизительно равен 57°17'48″. В радианной мере угол равен отношению длины дуги окружности к ее радиусу: .

(2) Когда точка движется неравномерно, то мгновенная угловая скорость определяется как предел отношения Δφ к Δt при условии, что Δt —> 0:

(3) СИ — Международная система единиц. В этой системе за единицу длины принят 1 м, за единицу времени — 1с. Подробнее о СИ будет рассказано в дальнейшем.

Источник: http://tepka.ru/fizika_10/37.html

Ускорение – среднее, мгновенное, тангенциальное, нормальное, полное

Через какое время после начала движения нормальное ускорение будет

Ускорение характеризует быстроту изменения скорости.

К примеру, автомобиль, который трогается с места, движется ускоренно, так как наращивает скорость движения. В точке начала движения скорость автомобиля равняется нулю. Начав движение, автомобиль разгоняется до некоторой скорости.

При необходимости затормозить, автомобиль не сможет остановиться мгновенно, а за какое-то время. То есть скорость автомобиля будет стремиться к нулю – автомобиль начнет двигаться замедленно до тех пор, пока не остановится полностью. Но физика не имеет термина «замедление».

Если тело двигается, уменьшая скорость, этот процесс тоже называется ускорением, но со знаком «-».

Прямолинейное равноускоренное движение. Ускорение, скорость, перемещение

Через какое время после начала движения нормальное ускорение будет

1439. Мотоцикл в течение 5 с может увеличить скорость от 0 до 72 км/ч. Определите ускорение мотоцикла.

1440. Определите ускорение лифта в высотном здании, если он увеличивает свою скорость на 3,2 м/с в течение 2 с.

1441. Автомобиль, двигавшийся со скоростью 72 км/ч, равномерно тормозит и через 10 с останавливается. Каково ускорение автомобиля?

1442. Как назвать движения, при которых ускорение постоянно? равно нулю?
Равноускоренное, равномерное.

1443. Санки, скатываясь с горы, движутся равноускоренно и в конце третьей секунды от начала движения имеют скорость 10,8 км/ч. Определите, с каким ускорением движутся санки.

1444. Скорость автомобиля за 1,5 мин движения возросла от 0 до 60 км/ч. Найдите ускорение автомобиля в м/с2 , в см/с2.

1445. Мотоцикл «Хонда», двигавшийся со скоростью 90 км/ч, начал равномерно тормозить и через 5 с сбросил скорость до 18 км/ч. Каково ускорение мотоцикла?

1446. Объект из состояния покоя начинает двигаться с постоянным ускорением, равным 6 • 10-3 м/с2. Определите скорость через 5 мин после начала движения. Какой путь прошел объект за это время?

1447. Яхту спускают на воду по наклонным стапелям. Первые 80 см она прошла за 10 с. За какое время яхта прошла оставшиеся 30 м, если ее движение оставалось равноускоренным?

1448. Грузовик трогается с места с ускорением 0,6 м/с2. За какое время он пройдет путь в 30 м?

1449. Электричка отходит от станции, двигаясь равноускоренно в течение 1 мин 20 с. Каково ускорение электрички, если за это время ее скорость стала 57,6 км/ч? Какой путь она прошла за указанное время?

1450. Самолет для взлета равноускоренно разгоняется в течение 6 с до скорости 172,8 км/ч. Найдите ускорение самолета. Какое расстояние прошел самолет при разгоне?

1451. Товарный поезд, трогаясь с места, двигался с ускорением 0,5 м/с2 и разогнался до скорости 36 км/ч. Какой путь он при этом прошел?

1452. От станции равноускоренно тронулся скорый поезд и, пройдя 500 м, достиг скорости 72 км/ч. Каково ускорение поезда? Определите время его разгона.

1453. При выходе из ствола пушки снаряд имеет скорость 1100 м/с. Длина ствола пушки равна 2,5 м. Внутри ствола снаряд двигался равноускоренно. Каково его ускорение? За какое время снаряд прошел всю длину ствола?

1454. Электричка, шедшая со скоростью 72 км/ч, начала тормозить с постоянным ускорением, равным по модулю 2 м/с2. Через какое время она остановится? Какое расстояние она пройдет до полной остановки?

1455. Городской автобус двигался равномерно со скоростью 6 м/с, а затем начал тормозить с ускорением, по модуля равным 0,6 м/с2. За какое время до остановки и на каком расстоянии от нее надо начать торможение?

1456. Санки скользят по ледяной дорожке с начальной скоростью 8 м/с, и за каждую секунду их скорость уменьшается на 0,25 м/с. Через какое время санки остановятся?

1457. Мотороллер, двигавшийся со скоростью 46,8 км/ч, останавливается при равномерном торможении в течение 2 с. Каково ускорение мотороллера? Каков его тормозной путь?

1458. Теплоход, плывущий со скоростью 32,4 км/ч, стал равномерно тормозить и, подойдя к пристани через 36 с, полностью остановился. Чему равно ускорение теплохода? Какой путь он прошел за время торможения?

1459. Товарняк, проходя мимо шлагбаума, приступил к торможению. Спустя 3 мин он остановился на разъезде. Какова начальная скорость товарняка и модуль его ускорения, если шлагбаум находится на расстоянии 1,8 км от разъезда?

1460. Тормозной путь поезда 150 м, время торможения 30 с. Найдите начальную скорость поезда и его ускорение.

1461. Электричка, двигавшаяся со скоростью 64,8 км/ч, после начала торможения до полной остановки прошла 180 м. Определите ее ускорение и время торможения.

1462. Аэроплан летел равномерно со скоростью 360 км/ч, затем в течение 10 с он двигался равноускоренно: его скорость возрастала на 9 м/с за секунду. Определите, какую скорость приобрел аэроплан. Какое расстояние он пролетел при равноускоренном движении?

1463. Мотоцикл, двигавшийся со скоростью 27 км/ч, начал равномерно ускоряться и через 10 с достиг скорости 63 км/ч. Определите среднюю скорость мотоцикла при равноускоренном движении. Какой путь он проехал за время равноускоренного движения?

1464. Прибор отсчитывает промежутки времени, равные 0,75 с. Шарик скатывается с наклонного желоба в течение трех таких промежутков времени. Скатившись с наклонного желоба, он продолжает двигаться по горизонтальному желобу и проходит в течение первого промежутка времени 45 см. Определите мгновенную скорость шарика в конце наклонного желоба и ускорение шарика при движении по этому желобу.

1465. Отходя от станции, поезд движется равноускоренно с ускорением 5 см/с2. По прошествии какого времени поезд приобретает скорость 36 км/ч?

1466. При отправлении поезда от станции его скорость в течение первых 4 с возросла до 0,2 м/с, в течение следующих 6 с еще на 30 см/с и за следующие 10 с на 1,8 км/ч. Как двигался поезд в течение этих 20 с?

1467. Санки, скатываясь с горы, движутся равноускоренно. На некотором участке пути скорость санок в течение 4 с возросла от 0,8 м/с до 14,4 км/ч. Определите ускорение санок.

1468. Велосипедист начинает двигаться с ускорением 20 см/с2. По истечении какого времени скорость велосипедиста будет равна 7,2 км/ч?

1469. На рисунке 184 дан график скорости некоторого равноускоренного движения. Пользуясь масштабом, данным на рисунке, определите путь, проходимый в этом движении в течение 3,5 с.

1470. На рисунке 185 изображен график скорости некоторого переменного движения. Перечертите рисунок в тетрадь и обозначьте штриховкой площадь, численно равную пути, проходимому в течение 3 с. Чему примерно равен этот путь?

1471. В течение первого промежутка времени от начала равноускоренного движения шарик проходит по желобу 8 см. Какое расстояние пройдет шарик в течение трех таких же промежутков, прошедших от начала движения?

1472. В течение 10 равных промежутков времени от начала движения тело, двигаясь равноускоренно, прошло 75 см. Сколько сантиметров прошло это тело в течение двух первых таких же промежутков времени?

1473. Поезд, отходя от станции, движется равноускоренно и в течение двух первых секунд проходит 12 см. Какое расстояние пройдет поезд в течение 1 мин, считая от начала движения?

1474. Поезд, отходя от станции, движется равноускоренно с ускорением 5 см/с2. Сколько времени потребуется для развития скорости 28,8 км/ч и какое расстояние пройдет поезд за это время?

1475. Паровоз по горизонтальному пути подходит к уклону со скоростью 8 м/с, затем движется вниз по уклону с ускорением 0,2 м/с. Определите длину уклона, если паровоз проходит его за 30 с.

1476. Начальная скорость тележки, движущейся вниз по наклонной доске, равна 10 см/с. Всю длину доски, равную 2 м, тележка прошла в течение 5 сек. Определите ускорение тележки.

1477. Пуля вылетает из ствола ружья со скоростью 800 м/с. Длина ствола 64 см. Предполагая движение пули внутри ствола равноускоренным, определите ускорение и время движения.

1478. Автобус, двигаясь со скоростью 4 м/с, начинает равномерно ускоряться на 1 м/с за секунду. Какой путь пройдет автобус за шестую секунду?

1479. Грузовик, имея некоторую начальную скорость, начал двигаться равноускоренно: за первые 5 с прошел 40 м, а за первые 10 с — 130 м. Найдите начальную скорость грузовика и его ускорение.

1480. Катер, отходя от пристани, начал равноускоренное движение. Пройдя некоторое расстояние, он достиг скорости 20 м/с. Какова была скорость катера в тот момент, когда он проплыл половину этого расстояния?

1481. Лыжник скатывается с горы с нулевой начальной скоростью. На середине горы его скорость была 5 м/с, через 2 с скорость стала 6 м/с. Считая, что она увеличивается равномерно, определите скорость лыжника через 8 с после начала движения.

1482. Автомобиль тронулся с места и двигается равноускоренно. За какую секунду от начала движения путь, пройденный автомобилем, вдвое больше пути, пройденного им в предыдущую секунду?

1483. Найдите путь, пройденный телом за восьмую секунду движения, если оно начинает двигаться равноускоренно без начальной скорости и за пятую секунду проходит путь 27 м.

1484. Провожающие стоят у начала головного вагона поезда. Поезд трогается и движется равноускоренно. За 3 с весь головной вагон проходит мимо провожающих. За какое время пройдет мимо провожающих весь поезд, состоящий из 9 вагонов?

1485. Материальная точка движется по закону x = 0,5t². Какое это движение? Каково ускорение точки? Постройте график зависимости от времени:а) координаты точки;б) скорости точки;

в) ускорения.

Источник: https://kupuk.net/9-klass/reshebnik-k-sborniku-zadach-po-fizike-dlya-7-9-klassov-peryishkin-a-v/pryamolineynoe-ravnouskorennoe-dvizhenie-uskorenie-skorost-peremeshhenie/

Biz-books
Добавить комментарий