3.4. Электрический ток

Содержание
  1. § 3.4. Электрический ток в растворах и расплавах электролитов
  2. Электролитическая диссоциация
  3. Ионная проводимость растворов и расплавов электролитов
  4. Электролиз
  5. Закон Ома
  6. 3.4. Электрический ток
  7. 3.4.2. Закон Ома
  8. Что такое электрический ток: определение, характеристики, виды
  9. Что такое электрический ток?
  10. Как всё начиналось
  11. Определение
  12. Источники тока
  13. Характеристики
  14. Сила и плотность тока
  15. Мощность
  16. Частота
  17. Ток смещения
  18. Виды тока
  19. Классификация переменного тока
  20. Дрейфовая скорость электронов
  21. Направление электрического тока
  22. Электрический ток в различных средах
  23. В полупроводниках
  24. в вакууме и газе
  25. в жидкостях
  26. проводники электрического тока
  27. Электробезопасность
  28. Что такое электрический ток? Основные понятия, характеристики и действия
  29. Рассмотрим работу электровакуумных приборов
  30. Давайте теперь разберёмся в основных характеристиках тока
  31. Опасность электрического тока и другие опасные свойства электричества и техника безопасности
  32. Как обезопасить себя от поражения электрическим током

§ 3.4. Электрический ток в растворах и расплавах электролитов

3.4. Электрический ток

  • К электролитам относят соли, кислоты и щелочи. Какова электропроводность этих веществ? Обратимся к опыту.

Соединим последовательно источник тока, электрическую лампочку и два электрода (две пластинки).

Электроды разъединены (цепь не замкнута), поэтому, естественно, лампочка не горит. Опустим теперь электроды в сосуд с дистиллированной водой. Лампочка также не горит.

Значит, дистиллированная вода не является проводником электрического тока.

Вынем электроды из воды и поставим их на лист бумаги, на который насыпана поваренная соль NaCl. Лампочка и теперь не горит. Следовательно, и сухая соль не является проводником электрического тока. Наконец, еще раз опустим в дистиллированную воду электроды с прилипшей к ним солью. Мы увидим, что лампочка загорелась, что свидетельствует о появлении электрического тока.

Таким образом, хотя в отдельности дистиллированная вода и соль не являются проводниками, раствор соли в воде является хорошим проводником электрического тока. То же можно сказать (и на опыте в этом убедиться) о водных растворах кислот и щелочей.

Электролитическая диссоциация

Заряженные частицы, обеспечивающие электрический ток в этих растворах, образуются в результате электролитической диссоциации.

Из-за взаимодействия с полярными молекулами воды молекулы растворяемых веществ распадаются на разноименно заряженные «осколки» — ионы.

Положительно заряженными оказываются ионы металлов и водорода, а отрицательно заряженными — кислотные остатки и гидроксильная группа (ОН).

Рассмотрим этот процесс подробнее на примере бромида калия КВг.

Взаимодействие атомов брома и калия в молекуле бромида калия упрощенно можно представить как взаимодействие двух ионов: положительно заряженного иона К+ и отрицательно заряженного иона Вг-.

Объясняется это тем, что единственный валентный электрон у калия слабо связан с атомом. При образовании молекулы КВг этот электрон переходит к атому брома, превращая его в отрицательный ион Вг-.

В соответствии с этим молекулу КВг можно схематически изобразить в виде диполя (рис. 3.4).

Рис. 3.4

При растворении соли бромида калия в воде молекулы КВг попадают в окружение молекул воды, которые тоже являются диполями. В электрическом поле, создаваемом молекулой КВг, молекулы воды ориентируются, как показано на рисунке 3.5.

При этом они растягивают молекулу КВг настолько, что незначительная встряска при столкновении с другими молекулами, участвующими в тепловом движении, разрушает ее. Часть молекул КВг распадается — диссоциирует на ионы К+ и Вг-.

Рис. 3.5

Степень диссоциации, т. е. доля молекул растворенного вещества, которые распадаются на ионы, зависит от температуры, концентрации раствора и диэлектрической проницаемости ε растворителя. С увеличением температуры степень диссоциации возрастает и, следовательно, увеличивается концентрация положительно и отрицательно заряженных ионов.

Наряду с процессом диссоциации в растворах электролитов происходит и обратный процесс. Ионы разных знаков при встрече могут снова объединиться в нейтральные молекулы — рекомбинировать (воссоединяться).

При неизменных условиях в растворе устанавливается динамическое равновесие, при котором число молекул, распадающихся за секунду на ионы, равно числу пар ионов, которые за то же время вновь воссоединяются в нейтральные молекулы.

При наступлении динамического равновесия концентрация ионов в растворе электролита сохраняется постоянной (при неизменной температуре).

Ионная проводимость растворов и расплавов электролитов

При отсутствии внешнего электрического поля ионы вместе с нераспавшимися молекулами находятся в хаотическом тепловом движении.

Если сосуд с раствором электролита включить в электрическую цепь, то между электродами образуется электрическое поле и ионы в растворе придут в упорядоченное движение (рис. 3.6).

Положительно заряженные ионы станут двигаться по направлению напряженности поля, т. е. к катоду (электроду, соединенному с отрицательным полюсом источника тока), а отрицательно заряженные ионы — в противоположном направлении, т. е.

к аноду (электроду, соединенному с положительным полюсом источника тока).

Рис. 3.6

Отрицательные ионы, пришедшие к аноду и называемые поэтому анионами, отдают свои лишние электроны аноду, а посредством его и соединительных проводников — положительному полюсу источника, возмещая на нем недостаток электронов.

Положительные ионы, пришедшие к катоду и потому называемые катионами, получают недостающие им электроны из избытка их на катоде. Так устанавливается во внешней цепи перемещение электронов от отрицательного полюса источника тока к положительному.

При этом через раствор электролита заряд переносится вместе с частицами вещества — ионами. Такую проводимость называют ионной.

В расплавах электролитов проводимость также ионная, так как при плавлении твердых электролитов их молекулы распадаются на положительные и отрицательные ионы. Жидкие же металлы обладают электронной проводимостью.

Электролиз

При прохождении электрического тока через г раствор электролита анионы отдают свои лишние электроны на аноде (в химии это называется окислительной реакцией), а катионы на катоде получают недостающие электроны (восстановительная реакция). Таким образом, на электродах при прохождении через раствор электрического тока происходит выделение веществ, входящих в состав электролитов.

Процесс выделения на электродах вещества, связанный с окислительно-восстановительными реакциями, называют электролизом.

В ряде случаев нейтрализуемые на электродах ионы вступают в химические реакции с растворителем, растворенными веществами или с веществом электродов. Эти реакции называют вторичными.

Так, например, при электролизе раствора медного купороса (CuSO4) на катоде выделяется медь, а на аноде — кислотный остаток SO4, который вступает в реакцию с веществом анода — медью;

Сu + SO4 = CuSO4

Благодаря этой реакции концентрация раствора медного купороса остается неизменной. Происходит лишь перенос меди с анода на катод, пока анод полностью не израсходуется.

В случае платинового анода при электролизе раствора медного купороса происходит реакция с растворителем:

2SO4 + 2Н2О → 2H2SO4 + O2

Молекулы серной кислоты попадают в раствор, а молекулярный кислород выделяется в виде пузырьков.

Закон Ома

Для растворов электролитов справедлив закон Ома. Это утверждение можно обосновать подобно тому, как это было сделано в предыдущем параграфе для металлических проводников.

При постоянной температуре графиком, выражающим зависимость силы тока от напряжения (вольт-амперная характеристика) для растворов электролитов, является, как и для металлического проводника, прямая линия. Однако эта прямая не проходит через начало координат, а «сдвинута» вправо (рис. 3.7).

Рис. 3.7

Это объясняется тем, что при электролизе происходит поляризация электродов, погруженных в раствор электролита (см. § 2,12), причем ЭДС поляризации в имеет знак, противоположный знаку напряжения U на электродах. На рисунке 3.7 отрезок ОА соответствует ЭДС поляризации.

В растворах и расплавах электролитов свободные электрические заряды появляются за счет распада на ионы нейтральных молекул. Движение ионов в поле означает перенос вещества.

Источник: http://tepka.ru/fizika_10-11/51.html

3.4. Электрический ток

3.4. Электрический ток

Электрический ток представляет собой направленное движение зарядов. Замечательным свойством проводников является способность проводить электрический ток, который в проводниках представляет собой поток свободных электронов. Количественной мерой электрического тока служит сила тока — количество заряда, проходящее через сечение проводника в единицу времени,

Единицей силы тока является 1 ампер — ток, при котором в 1 секунду через сечение проводника протекает 1 кулон заряда. Протекающий по проводнику заряд равен числу электронов, каж-

дый из которых несет на себе элементарный заряд q, Q = q N. Поэтому сила тока есть произведение элементарного заряда на величину потока частиц:

Отсюда видно, что сила тока есть по существу величина потока заряда. Реально электрический ток протекает в проводниках определенной формы, характеризуемых определенными геометрическими размерами. Рассмотрим однородный проводник конечных размеров цилиндрической формы (провод), имеющий объем V и поперечное сечение S (рис.). Пусть в проводнике на-

ходятся N электронов. Выделим бесконечно малый элемент объема проводника dV = Sd , где d — бесконечно малый элемент дли-

ны проводника. Количество электронов, содержащихся в объеме dV:

dN = N dVV = VN Sd

Подставив это выражение в формулу (3.57), запишем силу тока

в виде:

I = q VN S ddt ,

Заметим, что величина d совпадает с перемещением электрона

d вдоль проводника. Поэтому d /dt = v есть скорость электрона

под действием электрического поля. Окончательно для силы тока получаем:

I = qNSv = qnvS ,(3.58)
V

где n — плотность электронов в проводнике.

Сила тока, отнесенная к площади поперечного сечения проводника

j =I= qnv(3.59)
S
называется плотностью тока. Соответственно для однородного
проводника
I = j S.(3.60)
деПлотность тока — векторная величина, ее можно записать в ви-
j = qnv .
(3.61)

За направление тока в проводниках принимается направление движения положительных зарядов. Если плотность тока неравно-

мерно распределена по сечению проводника, вместо (3.60) следует пользоваться более общей формулой:

S

Сравнивая (3.62) и (3.17), можно видеть, что сила тока равна величине потока вектора плотности тока через поверхность.

3.4.2. Закон Ома

Причиной, вызывающей направленное движение заряженных частиц, является сила, действующая на заряд со стороны электрического поля (3.4). Согласно второму закону Ньютона, эта сила приводит к изменению импульса частиц

dp(3.63)
dt= qE .
Если заряд первоначально покоился, то в постоянном поле за-
ряд приобретает импульс
t
p = ∫qEdt = qEt .(3.64)
0

Если бы электроны металла имели возможность двигаться сво-

бодно, не испытывая столкновений, этот импульс мог бы увеличиваться беспредельно. Однако в проводнике газ свободных электронов движется сквозь кристаллическую решетку тяжелых ионов металла. Поэтому время от времени электроны сталкиваются с ионами решетки, при этом передавая последним частично или полностью свой импульс.

После каждого такого столкновения электрону приходится заново начинать свое движение под действием поля. Характерное время между последовательными столкновениями зависит от плотности металла, степени его чистоты, температуры тела и других факторов и называется средним временем свободного пробега τ.

Таким образом, импульс, реально получаемый электроном металла во внешнем поле,

Полный импульс, приобретаемый всеми электронами единицы

объема проводника,
n p = n q E τ.(3.66)

Используя определение импульса p = mv, где m — масса электрона, находим отсюда направленную скорость частиц единицы

q
объема проводника nv =nEτ. Умножив это выражение на q,
m
имеем плотность тока (3.61)nq2 τ
j= qnv =m E .(3.67)

Мы получили соотношение между напряженностью поля в проводнике и вызываемой ею плотностью электрического тока. Величина

называется удельной проводимостью металла или удельной электропроводностью. Рассчитанная на единицу объема, она характеризует способность проводника проводить электрический

ток. Чем больше величина σ, тем большая плотность тока создается в проводнике при той же напряженности внешнего поля. Таким образом, соотношение (3.67) можно записать в форме:

Величина, обратная σ, называется удельным электрическим со-

противлением
ρ = 1/σ.(3.70)

Воспользуемся связью между плотностью и силой тока (3.59), а также выразим напряженность поля через разность потенциалов на

концах проводника. Для однородного поля E = (ϕ1 – ϕ2)/ = U/ ,

где – длина проводника.

Связь между силой тока и разностью потенциалов имеет вид:

I =S(ϕ1 − ϕ2 )=SU .(3.71)
ρρ
Величина
R = ρ /S(3.72)

является электрическим сопротивлением проводника. Для нее существует единица измерения 1 Ом — сопротивление такого проводника, в котором разность потенциалов в 1 В создает ток в 1 А.

Разность потенциалов на концах проводника U = ϕ1 – ϕ2 называют падением напряжения на проводнике. В этих терминах соотношение (3.71) приобретает вид:

I = U/R, (3.73)

который выражает собой хорошо известный закон Ома. Записанный в форме

он утверждает, что падение напряжения на проводнике равно произведению силы тока на сопротивление проводника. Закон Ома

Источник: https://studfile.net/preview/6139733/page:33/

Что такое электрический ток: определение, характеристики, виды

3.4. Электрический ток

Открытия, связанные с электричеством, кардинально изменили нашу жизнь. Используя электрический ток как источник энергии, человечество сделало прорыв в технологиях, которые облегчили наше существование.

Сегодня электричество приводит в движение токарные станки, автомобили, управляет роботизированной техникой, обеспечивает связь. Этот список можно продолжать очень долго.

Даже трудно назвать отрасль, где можно обойтись без электроэнергии.

В чём секрет такого массового использования электричества? Ведь в природе существуют и другие источники энергии, более дешевые, чем электричество. Оказывается всё дело в транспортировке.

Электрическую энергию можно доставить практически везде:

  • к производственному цеху;
  • квартире;
  • на поле;
  • в шахту, под воду и т. д.

Электроэнергию, накопленную аккумулятором, можно носить с собой. Мы пользуемся этим ежедневно, беря с собой сотовый телефон. Ни один другой вид энергии не обладает такими универсальными свойствами как электричество. Разве это не является достаточной причиной для того, чтобы глубже изучить природу и свойства электричества?

Что такое электрический ток?

Электрические явления наблюдались давно, но объяснить их природу человек смог относительно недавно. Удар молнии казался чем-то неестественным, необъяснимым. Странным казалось потрескивание некоторых предметов при их трении. Искрящаяся в темноте расчёска, после расчёсывания шерсти животных (например, кошки) вызвала недоумение, но подогревала интерес к этому явлению.

Как всё начиналось

Ещё древним грекам было известно свойство янтаря, потёртого о шерсть, притягивать некоторые мелкие предметы. Кстати, от греческого названия янтаря –«электрон» пошло название «электричество».

Когда физики вплотную занялись исследованием электризации тел, они начали понимать природу подобных явлений.

А первый кратковременный электрический ток, созданный человеком, появился при соединении проводником двух наэлектризованных предметов (см. рис. 1). В 1729 году англичане Грей и Уиллер открыли проводимость зарядов некоторыми материалами.

Но определения электрического тока они не смогли дать, хотя и понимали, что заряды перемещаются от одного тела к другому по проводнику.

Рис. 1. Опыт с заряженными телами

Об электрическом токе, как о физическом явлении заговорили лишь после того, как итальянец Вольта дал объяснение опытам Гальвани, а в 1794 году изобрёл первый в мире источник электричества – гальванический элемент (столб Вольта). Он обосновал упорядоченное перемещение заряженных частиц по замкнутой цепи.

Определение

В современной трактовке электрическим током называют направленное перемещение силами электрического поля заряженных частиц, Носителями зарядов металлических проводников являются электроны, а растворов кислот и солей — отрицательные и положительные ионы. Полупроводниковыми носителями зарядов являются электроны и «дырки».

Для того чтобы электрический ток существовал, необходимо всё время поддерживать электрическое поле. Должна существовать разница потенциалов, поддерживающая наличие первых двух условий. До тех пор, пока эти условия соблюдены, заряды будут упорядоченно перемещаться по участкам замкнутой электрической цепи. Эту задачу выполняют источники электричества.

Такие условия можно создать, например, с помощью электрофорной машины (рис. 2). Если два диска вращать в противоположных направлениях, то они будут заряжаться разноимёнными зарядами.

На щётках, прилегающих к дискам, появится разница потенциалов. Соединив контакты проводником, мы заставим заряженные частицы двигаться упорядоченно.

То есть электрофорная машина является источником электричества.

Рисунок 2. Электрофорная машина

Источники тока

Первыми источниками электрической энергии, нашедшими практическое применение, были упомянутые выше гальванические элементы. Усовершенствованные гальванические элементы (народное название – батарейки) широко применяются по сей день. Они используются для питания пультов управления, электронных часов, детских игрушек и многих других гаджетов.

С изобретением генераторов переменных токов электричество приобрело второе дыхание. Началась эра электрификации городов, а позже и всех населённых пунктов. Электрическая энергия стала доступной для всех граждан развитых стран.

Сегодня человечество ищет возобновляемые источники электроэнергии. Солнечные панели, ветряные электростанции уже занимают свои ниши в энергосистемах многих стран, включая Россию.

Характеристики

Электрический ток характеризуется величинами, которые описывают его свойства.

Сила и плотность тока

Для описания характеристики электричества часто используют термин «сила тока».

Название не совсем удачное, так как оно характеризует только интенсивность движения электрических зарядов, а не какую-то силу в буквальном смысле.

Тем не менее, этим термином пользуются, и он означает количество электричества (зарядов) проходящего через плоскость поперечного сечения проводника. Единицей измерения силы тока в системе СИ является ампер (А).

1 А означает то, что за одну секунду через поперечное сечение проводника проходит электрический заряд 1 Кл. (1А = 1 Кл/с).

Плотность тока  –  векторная величина. Вектор направлен в сторону движения положительных зарядов. Модуль этого вектора равен отношению силы тока на некотором перпендикулярном к направлению движения зарядов сечении проводника к площади этого сечения. В системе СИ измеряется в А/м2. Плотность более ёмко характеризует электричество, однако на практике чаще используется величина «сила тока».

Разница потенциалов (напряжение) на участке цепи выражается соотношением: U = I×R, где U – напряжение, I – сила тока, а R – сопротивление. Это знаменитый закон Ома.

Мощность

Электрическими силами совершается работа против активного и реактивного сопротивления. На пассивных сопротивлениях работа преобразуется в тепловую энергию. Мощностью называют работу, выполненную за единицу времени.

По отношению к электричеству применяют термин «мощность тепловых потерь». Физики Джоуль и Ленц доказали, что мощность тепловых потерь проводника равна силе тока умноженной на напряжение: P = I× U.

Единица измерения мощности – ватт (Вт).

Частота

Переменный ток характеризуется также частотой. Данная характеристика показывает, как за единицу времени изменяется количество периодов (колебаний). Единицей измерения частоты является герц. 1 Гц = 1 периоду за секунду. Стандартная частота промышленного тока составляет 50 Гц.

Ток смещения

Понятие «ток смещения» ввели для удобства, хотя в классическом понимании его нельзя назвать током, так как отсутствует перенос заряда. С другой стороны, интенсивность магнитного поля пребывает в зависимости от токов проводимости и смещения.

Токи смещения можно наблюдать в конденсаторах. Несмотря на то, что при зарядке и разрядке между обкладками конденсатора не происходит перемещения заряда, ток смещения протекает через конденсатор и замыкает электрическую цепь.

Виды тока

По способу генерации и свойствам электроток бывает постоянным и переменным. Постоянный – это такой, что не меняет своего направления. Он течёт всегда в одну сторону.

Переменный ток периодически меняет направление. Под переменным понимают любой ток, кроме постоянного.

Если мгновенные значения повторяются в неизменной последовательности через равные промежутки времени, то такой электроток называют периодическим.

Классификация переменного тока

Классифицировать изменяющиеся во времени токи можно следующим образом:

  1. Синусоидальный, подчиняющийся синусоидальной функции во времени.
  2. квазистационарный – переменный, медленно изменяющийся во времени. Обычные промышленные токи являются квазистационарными.
  3. Высокочастотный – частота которого превышает десятки кГц.
  4. Пульсирующий – импульс которого периодически изменяется.

Различают также вихревые токи, которые возникают в проводнике при изменении магнитного потока. Блуждающие токи Фуко, как их ещё называют, не текут по проводам, а образуют вихревые контуры. Индукционный ток имеет ту же природу что и вихревой.

Дрейфовая скорость электронов

Электричество по металлическому проводнику распространяется со скоростью света. Но это не означает, что заряженные частицы несутся от полюса к полюсу с такой же скоростью.

Электроны в металлических проводниках встречают на своём пути сопротивление атомов, поэтому их реальное перемещение составляет всего 0,1 мм за секунду.

Реальная, упорядоченная скорость перемещения электронов в проводнике называется дрейфовой.

Если замкнуть проводником полюсы источника питания, то вокруг проводника молниеносно образуется электрическое поле. Чем больше ЭДС источников, тем сильнее проявляется напряжённость электрического поля. Реагируя на напряжённость, заряженные частицы вмиг принимают упорядоченное движение и начинают дрейфовать.

Направление электрического тока

Традиционно считают, что вектор электрического тока направлен к отрицательному полюсу источника. Но на самом деле электроны движутся к положительному полюсу. Традиция возникла из-за того, что за направление вектора было выбрано движение положительных ионов в электролитах, которые действительно стремятся к негативному полюсу.

Электроны проводимости с отрицательным зарядом в металлах были открыты позже, но физики не стали менять первоначальные убеждения. Так укрепилось утверждение, что ток направлен от плюса к минусу.

Электрический ток в различных средах

Носителями тока в металлических проводниках являются свободные электроны, которые из-за слабых электрических связей хаотично блуждают внутри кристаллических решёток (рис. 3). Как только в проводнике появляется ЭДС, электроны начинают упорядочено дрейфовать в сторону позитивного полюса источника питания.

Рис. 3. Электрический ток в металлах

В результате прохождения тока возникает сопротивление проводников, которое препятствует потоку электронов и приводит нагреванию. При коротком замыкании выделение тепла настолько сильное, разрушает проводник.

В полупроводниках

в обычном состоянии у полупроводника нет свободных носителей зарядов.  но если соединить два разных типа полупроводников, то при прямом подключении они превращаются в проводник. происходит это потому, что у одного типа есть положительно заряженные ионы (дырки), а у другого – отрицательные ионы (атомы с лишним электроном).

под напряжением электроны из одного полупроводника устремляются для замещения (рекомбинации) дырок в другом. возникает упорядоченное движение свободных зарядов. такую проводимость называют электронно-дырочной.

в вакууме и газе

электрический ток возможен и в ионизированном газе. заряд переносится положительными и отрицательными ионами. ионизация газов возможна под действием излучения или вследствие сильного нагревания. под действием этих факторов возбуждаются атомы, которые превращаются в ионы (рис. 4).

рис 4. электрический ток в газах

в вакууме электрические заряды не встречают сопротивления, поэтому. заряженные частицы движутся с околосветовыми скоростями. носителями зарядов являются электроны. для возникновения тока в вакууме необходимо создать источник электронов и достаточно большой положительный потенциал на электроде.

примером может служить работа вакуумной лампы или электронно-лучевая трубка.

в жидкостях

оговоримся сразу – не все жидкости являются проводниками. электрический ток возможен в кислотных, щёлочных и соляных растворах. иначе говоря – в средах, где имеются заряженные ионы.

если опустить в раствор два электрода и подключить их к полюсам источника, то между ними будет протекать электрический ток (рис. 5). под действием эдс катионы устремятся к катоду (минусу), а анионы к аноду. при этом будет происходить химическое воздействие на электроды – на них будут оседать атомы растворённых веществ. такое явление называют электролизом.

рис. 5. электроток в жидкостях

для лучшего понимания свойств электротока в разных средах, предлагаю рассмотреть картинку на рисунке 6. обратите внимание на вольтамперные характеристики (4 столбец).

рис. 6. электрический ток в средах

проводники электрического тока

Среди множества веществ, лишь некоторые являются проводниками. К хорошим проводникам относятся металлы. Важной характеристикой проводника является его удельное сопротивление.

Небольшое сопротивление имеют:

  • все благородные металлы;
  • медь;
  • алюминий;
  • олово;
  • свинец.

На практике наиболее часто применяют алюминиевые и медные проводники, так как они не слишком дорогие.

Электробезопасность

Несмотря на то что электричество прочно вошло в нашу жизнь, не следует забывать об электробезопасности. Высокие напряжения опасны для жизни, а короткие замыкания становятся причиной пожаров.

При выполнении ремонтных работ необходимо строго соблюдать правила безопасности: не работать под высоким напряжением, использовать защитную одежду и специальные инструменты, применять ножи заземления и т.п.

В быту используйте только такую электротехнику, которая рассчитана на работу в соответствующей сети. Никогда не ставьте «жучки» вместо предохранителей.

Помните, что мощные электролитические конденсаторы имеют большую электрическую емкость. Накопленная в них энергия может вызвать поражение даже спустя несколько минут после отключения от сети.

Источник: https://www.asutpp.ru/chto-takoe-elektricheskiy-tok.html

Что такое электрический ток? Основные понятия, характеристики и действия

3.4. Электрический ток

Что такое электрический ток? В учебнике физики есть определение:

ЭЛЕКТРИЧЕСКИЙ ТОК — это упорядоченное (направленное) движение заряженных частиц под действием электрического поля. Частицами могут быть: электроны, протоны, ионы, дырки.

В академических учебниках определение описывается так:

ЭЛЕКТРИЧЕСКИЙ ТОК — это скорость изменения электрического заряда во времени.

    • Заряд электронов отрицателен.
    • протоны — частицы с положительным зарядом;
  • нейтроны — с нейтральным зарядом.

СИЛА ТОКА – это количество заряженных частиц (электроны, протоны, ионы, дырки), протекающих через поперечное сечение проводника.

Все физические вещества, в том числе металлы состоят из молекул, состоящих из атомов, которые в свою очередь состоят из ядер и вращающихся вокруг них электронов.

Во время химических реакций электроны переходят от одних атомов к другим, поэтому, атомы одного вещества испытывают недостаток в электронах, а атомы другого вещества имеют их избыток. Это означает, что вещества имеют разноименные заряды. В случае их контакта, электроны будут стремиться перейти из одного вещества в другое.

Именно это перемещение электронов и есть ЭЛЕКТРИЧЕСКИЙ ТОК. Ток, который будет течь, до тех пор, пока заряды этих двух веществ не уравняются. Взамен ушедшего электрона приходит другой.

Откуда? От соседнего атома, к нему — от его соседа, так до крайнего, к крайнему — от отрицательного полюса источника тока (например — батарейки). С другого конца проводника электроны уходят на положительный полюс источника тока. Когда все электроны на отрицательном полюсе закончатся, ток прекратится (батарея «села»).

НАПРЯЖЕНИЕ — это характеристика электрического поля и представляет собой разность потенциалов двух точек внутри электрического поля.

Вроде как то не понятно. Проводник – это в простейшем случае — проволока, сделанная из металла (чаще применяется медь и алюминий). Масса электрона равна 9,10938215(45)×10-31 кг. Если электрон имеет массу, то это означает, что он материален. Но проводник сделан из металла, а металл то, твёрдый, как по нему текут какие то, электроны?

Число электронов в веществе, равное числу протонов лишь обеспечивает его нейтральность, а сам химический элемент определяется количеством протонов и нейтронов исходя из периодического закона Менделеева. Если чисто теоретически отнять от массы любого химического элемента все его электроны, он практически не приблизится к массе ближайшего химического элемента.

Слишком большая разница между массами электрона и ядра (масса только 1-го протона примерно в 1836 больше массы электрона). А уменьшение или увеличение числа электронов должно приводить лишь к изменению общего заряда атома. Число электронов у отдельно взятого атома всегда переменно.

Они, то покидают его, вследствие теплового движения, то возвращаются обратно, потеряв энергию.

Если электроны движутся направленно, значит, они «покидают» свой атом, а не будет теряться атомарная масса и как следствие, меняться и химический состав проводника? Нет.

Химический элемент определяется не атомарной массой, а количеством ПРОТОНОВ в ядре атома, и ничем другим. При этом наличие или отсутствие электронов или нейтронов у атома роли не играет.

Добавим — убавим электроны — получим ион, добавим — убавим нейтроны — получим изотоп. При этом химический элемент останется тем же.

С протонами другая история: один протон — это водород, два протона — это гелий, три протона — литий и.т.д (см. таблицу Менделеева). Поэтому, сколько ни пропускай ток через проводник, химический состав его не изменится.

Другое дело электролиты. Здесь как раз ХИМИЧЕСКИЙ СОСТАВ МЕНЯЕТСЯ. Из раствора под действием тока выделяются элементы электролита. Когда все выделятся, ток прекратится. Всё потому, что носители заряда в электролитах — ионы.

Бывают химические элементы без электронов:

1.  Атомарный космический водород.

2. Газы в верхних слоях атмосферы Земли и других планет с атмосферой.

2. Все вещества в состоянии плазмы.

3. В ускорителях, коллайдерах.

Под действием электрического тока химические вещества (проводники) могут «рассыпаться». Например, плавкий предохранитель. Движущиеся электроны на своем пути расталкивают атомы, если ток сильный — кристаллическая решетка проводника разрушается и проводник расплавляется.

Рассмотрим работу электровакуумных приборов

Напомню, что во время действия электрического тока в обычном проводнике, электрон, покидая своё место, оставляет там «дырку», которая затем заполняется электроном от другого атома, где в свою очередь так же образуется дырка, в последствии заполняемая другим электроном. Весь процесс движения электронов происходит в одну сторону, а движение «дыр», в противоположную. То есть дырка – явление временное, она заполняется всё равно. Заполнение необходимо для сохранения равновесия заряда в атоме.

А теперь рассмотрим работу электровакуумного прибора. Для примера возьмём простейший диод – кенотрон. Электроны в диоде во время действия электрического тока испускаются катодом в направлении анода. Катод покрыт специальными окислами металлов, которые облегчают выход электронов из катода в вакуум (малая работа выхода). Никакого запаса электронов в этой тоненькой пленке нет.

Для обеспечения выхода электронов катод сильно разогревают нитью накала. Со временем раскаленная пленка испаряется, оседает на стенках колбы, и эмиссионная способность катода уменьшается. И такой электронно-вакуумный прибор попросту выкидывают. А если прибор дорогой, его восстанавливают.

Для его восстановления колбу распаивают, заменяют катод на новый, после чего колбу обратно запаивают.

Электроны в проводнике двигаются «перенося на себе» электрический ток, а катод пополняется электронами от проводника, подключенного к катоду. На замену электронам, покинувшим катод, приходят электроны от источника тока.

Понятие «скорость движения электрического тока» не существует. Со скоростью, близкой к скорости света (300 000 км/с), по проводнику распространяется электрическое поле, под действием которого все электроны начинают движение с малой скоростью, которая приблизительно равна 0,007 мм/с, не забывая ещё и хаотически метаться в тепловом движении.

Давайте теперь разберёмся в основных характеристиках тока

Представим картину: У вас имеется стандартная картонная коробка с горячительным напитком на 12 бутылок. А вы пытаетесь засунуть туда ещё бутылку. Предположим вам это удалось, но коробка едва выдержала. Вы засовываете туда ещё одну, и вдруг коробка рвётся и бутылки вываливаются.

Коробку с бутылками можно сравнить с поперечным сечением проводника:

Чем шире коробка (толще провод), тем большее количество бутылок (СИЛУ ТОКА), она может в себя поместить (обеспечить).

В коробке (в проводнике) можно поместить от одной до 12 бутылок – она не развалится (проводник не сгорит), а большее число бутылок (большую силу тока) она не вмещает (представляет сопротивление).

Если сверху на коробку, мы поставим ещё одну коробку, то на одной единице площади (сечении проводника) мы разместим не 12, а 24 бутылки, ещё одну сверху — 36 бутылок.

Одну из коробок (один этаж) можно принять за единицу аналогичную НАПРЯЖЕНИЮ электрического тока.

Чем шире коробка (меньше сопротивление), тем большее количество бутылок (СИЛУ ТОКА) она может обеспечить.

Увеличив высоту коробок (напряжение), мы можем увеличить общее количество бутылок (МОЩНОСТЬ) без разрушения коробок (проводника).

По нашей аналогии получилось:

Общее количество бутылок это — МОЩНОСТЬ

Количество бутылок в одной коробке (слое) это — СИЛА ТОКА

Количество ящиков в высоту (этажей) это — НАПРЯЖЕНИЕ

Ширина коробки (вместимость) это — СОПРОТИВЛЕНИЕ участка электрической цепи

Путём перечисленных аналогий, мы пришли к «ЗАКОНУ ОМА«, который ещё называется Законом Ома для участка цепи. Изобразим его в виде формулы:

Закон Ома

где I – сила тока, U – напряжение (разность потенциалов), R – сопротивление.

По-простому, это звучит так: Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Кроме того, мы пришли и к «ЗАКОНУ ВАТТА«. Так же изобразим его в виде формулы:

Закон Ватта

где I – сила тока, U – напряжение (разность потенциалов), Р – мощность.

По-простому, это звучит так: Мощность равна произведению силы тока на напряжение.

Сила электрического тока измеряется прибором называемым Амперметром. Как вы догадались, величина электрического тока (количество переносимого заряда) измеряется в амперах.

Для увеличения диапазона обозначений единицы изменения существуют такие приставки кратности как микро — микроампер (мкА), мили – миллиампер (мА). Другие приставки в повседневном обиходе не используются. Например: Говорят и пишут «десять тысяч ампер», но никогда не говорят и не пишут 10 килоампер.

Такие значения в обычной жизни не реальны. То же самое можно сказать про наноампер. Обычно говорят и пишут 1×10-9 Ампер.

Электрическое напряжение (электрический потенциал) измеряется прибором называемым Вольтметром, как вы догадались, напряжение, т. е. разность потенциалов, которая заставляет течь ток, измеряется в Вольтах (В).

Так же, как для тока, для увеличения диапазона обозначений, существуют кратные приставки: (микро — микровольт (мкВ), мили – милливольт (мВ), кило – киловольт (кВ), мега – мегавольт (МВ).

Напряжение ещё называют ЭДС – электродвижущей силой.

Электрическое сопротивление измеряется прибором называемым Омметром, как вы догадались, единица измерения сопротивления – Ом (Ом). Так же, как для тока и напряжения, существуют приставки кратности: кило – килоом (кОм), мега – мегаом (МОм). Другие значения в обычной жизни не реальны.

Ранее, Вы узнали, что сопротивление проводника напрямую зависит от диаметра проводника. К этому можно добавить, что если к тонкому проводнику приложить большой электрический ток, то он будет не способен его пропустить, из-за чего будет сильно греться и, в конце концов, может расплавиться. На этом принципе основана работа плавких предохранителей.

Атомы любого вещества располагаются на некотором расстоянии друг от друга. В металлах расстояния между атомами настолько малы, что электронные оболочки практически соприкасаются.

Это дает возможность электронам свободно блуждать от ядра к ядру, создавая при этом электрический ток, поэтому металлы, а также некоторые другие вещества являются ПРОВОДНИКАМИ электричества. Другие вещества – наоборот, имеют далеко расставленные атомы, электроны, прочно связанные с ядром, которые не могут свободно перемещаться.

Такие вещества не являются проводниками и их принято называть ДИЭЛЕКТРИКАМИ, самым известным из которых является резина. Это и есть ответ на вопрос, почему электрические провода делают из металла.

О наличии электрического тока говорят следующие действия или явления, которые его сопровождают:

;1. Проводник, по которому течет ток, может нагреваться;

2. Электрический ток может изменять химический состав проводника;

3. Ток оказывает силовое воздействие на соседние токи и намагниченные тела.

При отделении электронов от ядер освобождается некоторое количество энергии, которое нагревает проводник. «Нагревательную» способность тока принято называть рассеиваемой мощностью и измерять в ваттах. Такой же единицей принято измерять и механическую энергию, преобразованную из электрической энергии.

Опасность электрического тока и другие опасные свойства электричества и техника безопасности

Электрический ток нагревает проводник, по которому течёт. Поэтому:

1. Если бытовая электрическая сеть испытывает перегрузку, изоляция постепенно обугливается и осыпается. Возникает возможность короткого замыкания, которое очень опасно.

2. Электрический ток, протекая по проводам и бытовым приборам, встречает сопротивление, поэтому «выбирает» путь с наименьшим сопротивлением.

3. Если происходит короткое замыкание, сила тока резко возрастает. При этом выделяется большое количество тепла, способное расплавить металл.

4. Короткое замыкание может произойти и из-за влаги. Если в случае с коротким замыканием происходит пожар, то в случае с воздействием влаги на электроприборы в первую очередь страдает человек.

5. Удар электричеством очень опасен, вероятен смертельный исход. При протекании электрического тока через организм человека, сопротивление тканей резко уменьшается. В организме происходят процессы нагревания тканей, разрушения клеток, отмирания нервных окончаний.

Как обезопасить себя от поражения электрическим током

Чтобы обезопасить себя от воздействия электрического тока, используют средства защиты от поражения электрическим током: работают в резиновых перчатках, используют резиновый коврик, разрядные штанги, устройства заземления аппаратуры, рабочих мест. Автоматические выключатели с тепловой защитой и защитой по току, так же являются не плохим средством защиты от поражения током, способным сохранить жизнь человека. Когда я не уверен в отсутствии опасности поражения электрическим током, при выполнении не сложных операций в электрощитовых, блоках аппаратуры, я как правило работаю одной рукой, а другую руку ложу в карман. Тем самым исключается возможность поражения током по пути рука-рука, в случае случайного прикосновения к корпусу щита, или другим массивным заземлённым предметам.

Для тушения пожара, возникшего на электрооборудовании используют только порошковые или углекислотные огнетушители. Порошковые тушат лучше, но после засыпания аппаратуры пылью из огнетушителя, эту аппаратуру не всегда возможно восстановить.

Biz-books
Добавить комментарий