1.7 — Механика твердого тела

7.1. Динамика вращения вокруг неподвижной оси

1.7 - Механика твердого тела

Движение материальной точки характеризуется перемещением, скоростью, ускорением. Но при вращении твердого тела все его элементы имеют разные перемещения, различные скорости.

Удобно найти переменные, одинаковые для всех элементов твердого тела. Мы их, собственно, уже знаем — угол поворота, угловая скорость, угловое ускорение.

Соответственно, изучая динамику вращения, вместо импульса и силы мы будем оперировать их угловыми аналогами — моментом импульса и моментом силы.

Уравнение движения. В теме 4.8 было выведено уравнение движения системы материальных точек в виде

где моменты импульса и силы определялись как

Внутренние силы между телами системы, напомним, выпали из уравнений движения. Абсолютно твердое тело можно рассматривать как систему частиц (материальных точек) с неизменными расстояниями между ними.

Поэтому выписанные уравнения применимы для твердого тела, а неизменность расстояний между его точками позволяет характеризовать вращение тела вокруг неподвижной оси единственной координатой — углом поворота. Поэтому мы можем упростить приведенное выше уравнение движения.

Прежде всего, нас не интересуют в данный момент напряжения, возникающие в оси. Кроме того, для описания вращения достаточно рассмотреть проекции векторов моментов импульса и силы на ось вращения.

Рис. 7.1. Момент импульса L двух шаров массы m, соединенных стержнем. Вся система вращается вокруг оси z c угловой скоростью ω

Направим ось z вдоль оси вращения и выделим в твердом теле элемент массой , положение которого характеризуется радиус-вектором (рис. 7.2).

Рис. 7.2 Вращение твердого тела вокруг неподвижной оси 0z

Момент импульса этого элемента есть

Рис. 7.3. Момент импульса системы направлен вдоль оси вращения.

Радиус-вектор можно представить как сумму его проекций на ось z и плоскость ху :

где вектор лежит в плоскости вращения и направлен от оси к выделенному элементу (см. рис. 7.1). Имеем:

Первое слагаемое — вектор, направленный противоположно Поэтому оно не дает вклада в z-компоненту момента импульса. Второе слагаемое — вектор, направленный вдоль оси z. Так как

и

можем написать:

Суммируя по всем элементам тела, получаем

где

Величина называется моментом инерции тела.

Говоря о моменте инерции, всегда указывают, относительно какой именно оси вращения он определен (в данном случае — это ось z). Момент инерции того же тела относительно какой-то другой оси примет иное значение. Сохраняется только общее правило его вычисления: берется сумма по элементам массы, составляющим тело, умноженным на квадраты расстояний этих элементов массы до оси вращения.

В случае непрерывного распределения масс с плотностью сумма заменится на интеграл по всему объему тела:

Если тело однородно, то его плотность во всех точках постоянна и можно вынести из-под знака интеграла.

Записываем теперь уравнение движения в проекции на ось z :

Если момент инерции не зависит от времени, то дифференцировать нужно только угловую скорость, в результате получаем основное уравнение динамики вращательного движения твердого тела в виде

Производная угловой скорости по времени — это угловое ускорение

7.1. Основное уравнение динамики вращательного движения. Демонстрация, вытекающей из него связи между угловым ускорением, моментом силы и моментом инерции

Рассмотрим теперь момент внешних сил. Разложим силу на вектор в направлении оси z и вектор, ей ортогональный:

Используя снова аналогичное разложение радиус-вектора

получаем для момента внешних сил :

Первое слагаемое равно нулю. Два следующих содержат единичный орт — вектор k, направленный вдоль оси 0z и, следовательно, не дают вклада в проекцию . Оба вектора

лежат в плоскости xy и, следовательно, последнее слагаемое направлено параллельно оси 0z. Если — угол между этими векторами, то

где — плечо силы (см. тему. 4.8). Силу

надо здесь понимать в алгебраическом смысле: она входит со знаком минус, если сила тормозит вращение.

Момент инерции. Найдем моменты инерции для простейших (геометрически правильных) форм твердого тела, масса которого равномерно распределена по объему.

Рис. 7.4. Моменты инерции различных тел

1. Момент инерции обруча относительно оси, перпендикулярной к его плоскости и проходящей через его центр.

Обруч считается бесконечно тонким, то есть толщиной обода можно пренебречь по сравнению с радиусом . Поскольку в этой системе все массы находятся на одинаковом расстоянии от оси вращения, можно вынести из-под знака интеграла:

где — полная масса обруча.

2. Момент инерции диска относительно оси, перпендикулярной его плоскости и проходящей через центр.

Диск считается бесконечно тонким, если его толщина много меньше радиуса . Момент инерции, согласно определению, величина аддитивная: момент инерции целого тела равен сумме моментов инерции его частей. Разобьем диск на бесконечно тонкие обручи радиусом и шириной (рис. 7.5).

Рис. 7.5 Вычисление момента инерции диска относительно оси z, перпендикулярной его плоскости и проходящей через центр

Площадь поверхности обруча равна произведению его длины окружности на ширину: . Поскольку масса m диска распределена равномерно, масса единицы площади равна , так что масса обруча равна

Момент инерции обруча мы уже знаем:

Осталось просуммировать моменты инерции всех таких обручей:

Такой же результат получится и для момента инерции цилиндра конечной длины относительно его продольной оси.

3. Момент инерции шара относительно его диаметра.

Поступим аналогичным образом: «нарежем» шар на бесконечно тонкие диски толщиной , находящиеся на расстоянии z от центра (рис. 7.6).

Рис. 7.6. Момент инерции шара относительно его диаметра

Радиус такого диска

Объем диска равен его площади, умноженной на толщину:

Массу диска находим, разделив массу шара на его объем и умножив на объем диска:

Момент инерции диска был найден выше. В применении к данному случаю он равен

Момент инерции шара находится интегрированием по всем таким дискам:

4. Момент инерции тонкого стержня относительно оси, проходящей через его середину перпендикулярно стержню.

Пусть стержень имеет длину . Направим ось x вдоль стержня. Начало координат по условию находится в центре стержня (рис. 7.7).

Рис. 7.7. Момент инерции тонкого стержня относительно оси, проходящей через его середину перпендикулярно стержню

Возьмем элемент стержня длиной , находящийся на расстоянии x от оси вращения. Его масса равна

а момент инерции

Отсюда находим момент инерции стержня:

Теорема Штейнера. В приведенных примерах оси проходят через центр масс (центр инерции) тела. Момент инерции относительно других осей вращения определяется в соответствии с теоремой Штейнера:

Рис. 7.8. К выводу теоремы Штейнера

Момент инерции тела относительно произвольной оси равен сумме момента инерции JC относительно параллельной оси, проходящей через центр инерции тела, и величины ma2 — произведения массы тела на квадрат расстояния от центра инерции тела до выбранной оси, то есть

Продемонстрируем сначала применение теоремы Штейнера. Вычислим момент инерции тонкого стержня относительно оси, проходящей через его край перпендикулярно стержню. Прямое вычисление сводится к тому же интегралу, возникшему при вычислении момента инерции стержня относительно оси, проходящей через его середину, но взятому в других пределах:

Расстояние до оси, проходящей через центр масс, равно a = l/2. По теореме Штейнера получаем тот же результат:

Вывод теоремы Штейнера иллюстрируется рис. 7.8, 7.9

Рис. 7.9. К выводу теоремы Штейнера

Пусть одна ось проходит в направлении единичного вектора n через центр масс С твердого тела (системы тел), а другая — параллельно ей через некоторую точку 0.

Из центра масс в направлении второй оси проводим ортогональный осям вектор a, который определяет положение точки 0.

Радиус-векторы некоторого элемента системы массой относительно точек С и 0 обозначаем и , соответственно. Момент инерции этого элемента относительно оси С есть

где — расстояние элемента от оси. По теореме Пифагора (см. рис. 7.9).

Катет равен проекции векторов и на ось вращения, то есть

Используя эти выражения и суммируя по всем элементам системы, находим момент инерции относительно оси, проходящей через точку С, и, аналогичным образом, момент инерции относительно параллельной оси, проходящей через точку 0 :

Здесь выражение для получено из простой заменой на .

Как видно из рис. 7.9, векторы и связаны между собой:

причем

так как векторы n и а ортогональны и их скалярное произведение

Тогда мы можем преобразовать выражение для :

Первое слагаемое в правой части — момент инерции относительно оси, проходящей через точку C. Третье слагаемое равно , где

— полная масса системы.

Второе слагаемое равно нулю, так как оно пропорционально радиус-вектору центра инерции относительно самого центра инерции. Окончательно:

что и требовалось доказать.

Теорема Штейнера связывает моменты инерции относительно параллельных осей. Иногда оказывается полезной другая теорема, связывающая моменты инерции относительно трех взаимно перпендикулярных осей. Однако эта теорема относится только к плоским фигурам, толщиной которых можно пренебречь по сравнению с размерами в двух других направлениях. Итак, теорема о моментах инерции плоских фигур:

Если через произвольную точку 0 плоской фигуры приведена ортогональная к фигуре ось, то момент инерции относительно этой оси равен сумме моментов инерции относительно двух взаимно перпендикулярных осей, лежащих в плоскости фигуры и проходящих через эту же точку 0.

Иными словами, берем на фигуре произвольную точку 0 и проводим координатные оси так, чтобы 0x и 0y лежали в плоскости фигуры. Тогда, согласно теореме, момент инерции относительно оси 0z равен сумме моментов инерции относительно осей 0x и 0y:

При этом расположение осей 0x, 0y может быть произвольным; главное, чтобы они лежали в плоскости фигуры (рис. 7.10).

Рис. 7.10. Моменты инерции плоской фигуры относительно взаимно перпендикулярных осей

Из рисунка видно, что

что и требовалось доказать.

Найдем, например, момент инерции диска относительно его диаметра. Два ортогональных диаметра диска равноправны, поэтому

Согласно теореме о плоской фигуре

откуда

Теперь можно применить теорему Штейнера, чтобы найти, например, момент инерции относительно оси , параллельной диаметру и проходящей через край диска (см. рис. 7.10):

Источник: https://online.mephi.ru/courses/physics/osnovi_mehaniki/data/lecture/7/p1.html

Механика твердого тела

1.7 - Механика твердого тела

Определение 1

Механика твердого тела — обширный раздел физики, исследующий движение твердого тела под воздействием внешних факторов и сил.

Рисунок 1. Механика твердого тела. Автор24 — интернет-биржа студенческих работ

Данное научное направление охватывает очень широкий круг вопросов в физике – в ней изучаются различные объекты, а также мельчайшие элементарные частицы вещества. В этих предельных случаях выводы механики представляют чисто теоретический интерес, предметом которого является также проектирование многих физических моделей и программ.

На сегодняшний день различают 5 видов движения твердого тела:

  • поступательное движение;
  • плоскопараллельное движение;
  • вращательное движение вокруг неподвижной оси;
  • вращательное вокруг неподвижной точки;
  • свободное равномерное движение.

Любое сложное движение материального вещества может быть в итоге сведено к совокупности вращательного и поступательного движений. Фундаментальное и важное значение для всей этой тематики имеет механика движения твердого тела, предполагающая математическое описание вероятных изменений в среде и динамику, которая рассматривает движение элементов под действием заданных сил.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Особенности механики твердого тела

Твердое тело, которое систематически принимает разнообразные ориентации в любом пространстве, можно считать состоящим из огромного количества материальных точек.

Это просто математический метод, помогающий расширить применимость теорий движения частиц, но не имеющий ничего общего с теорией атомного строения реального вещества.

Поскольку материальные точки исследуемого тела будут направляться в разных направлениях с различными скоростями, приходится применять процедуру суммирования.

В этом случае, нетрудно определить кинетическую энергию цилиндра, если заранее известен вращающегося вокруг неподвижного вектора с угловой скоростью параметр.

Момент инерции можно вычислить посредством интегрирования, и для однородного предмета равновесие всех сил возможно, если пластина не двигалась, следовательно, компоненты среды удовлетворяют условию векторной стабильности.

В результате выполняется выведенное на изначальном этапе проектирования соотношение. Оба эти принципа составляют базу теории строительной механики и необходимы при возведении мостов и зданий.

Изложенное возможно обобщить на тот случай, когда отсутствуют неподвижные линии и физическое тело свободно вращается в любом пространстве. При таком процессе имеются три момента инерции, относящиеся к «ключевым осям».

Проводившиеся постулаты в механике твердого вещества упрощаются, если пользоваться существующими обозначениями математического анализа, в которых предполагается предельный переход $(t → t0)$, так что нет надобности все время думать, как решить этот вопрос.

Интересно, что Ньютон первым применил принципы интегрального и дифференциального исчисления при решении сложных физических задач, а последующее становление механики как комплексной науки было делом таких выдающихся математиков, как Ж.Лагранж, Л.Эйлер, П.Лаплас и К.Якоби. Каждый из указанных исследователей находил в ньютоновском учении источник вдохновения для своих универсальных математических изысканий.

Момент инерции

При исследовании вращения твердого тела физики часто пользуются понятием момента инерции.

Определение 2

Моментом инерции системы (материального тела) относительно оси вращения называется физическая величина, которая равна сумме произведений показателей точек системы на квадраты их расстояний до рассматриваемого вектора.

Суммирование производится по всем движущимся элементарным массам, на которые разбивается физическое тело. Если изначально известен момент инерции исследуемого предмета относительно проходящей через его центр масс оси, то весь процесс относительно любой другой параллельной линии определяется теоремой Штейнера.

Теорема Штейнера гласит: момент инерции вещества относительно вектора вращения равен моменту его изменения относительно параллельной оси, которая проходит через центр масс системы, полученному посредством произведения масс тела на квадрат расстояния между линиями.

При вращении абсолютно твердого тела вокруг неподвижного вектора каждая отдельная точка движется по окружности постоянного радиуса с определенной скоростью и внутренний импульс перпендикулярны этому радиусу.

Деформация твердого тела

Рисунок 2. Деформация твердого тела. Автор24 — интернет-биржа студенческих работ

Рассматривая механику твердого тела, часто используют понятие абсолютно твердого тела. Однако в природе не существует таких веществ, так как все реальные предметы под влиянием внешних сил изменяют свои размеры и форму, то есть деформируются.

Определение 3

Деформация называется постоянной и упругой, если после прекращения влияния посторонних факторов тело принимает первоначальные параметры.

Деформации, которые сохраняются в веществе после прекращения взаимодействия сил, называются остаточными или пластическими.

Деформации абсолютного реального тела в механике всегда пластические, так как они после прекращения дополнительного влияния никогда полностью не исчезают. Однако если остаточные изменения малы, то ими возможно пренебречь и исследовать более упругие деформации. Все виды деформации (сжатие или растяжение, изгиб, кручение) могут быть в итоге сведены к происходящим одновременно трансформациям.

Если сила движется строго по нормали к плоской поверхности, напряжение носит название нормальным, если же по касательной к среде – тангенциальным.

Количественной мерой, которая характеризует характеризующей деформации, испытываемой материальным телом, является его относительное изменение.

За пределом упругости в твердом теле появляются остаточные деформации и график, детально описывающий возвращение вещества в первоначальное состояние после окончательного прекращения действия силы, изображается не на кривой, а параллельно ей. Диаграмма напряжений для реальных физических тел напрямую зависит от различных факторов. Один и тот же предмет может при кратковременном воздействии сил проявлять себя как совершенно хрупкое, а при длительных — постоянным и текучим.

Источник: https://spravochnick.ru/fizika/mehanika_sploshnyh_sred/mehanika_tverdogo_tela/

Механика твердого тела — бесплатно скачать решения по физике

1.7 - Механика твердого тела

Бесплатные решения из книги И.В. Савельева «Сборник вопросов и задач по общей физике».

1.146. Тело произвольной формы вращается вокруг оси OO с угловой скоростью ω. Доказать, что угловая скорость вращения тела вокруг любой другой оси О'О',…

1.147. Точка 1 тела, вращающегося с угловой скоростью ω, имеет в некоторый момент времени скорость v1. Найти для того же момента времени скорость…

1.148. Тело совершает плоское движение в плоскости x, y. Центр масс тела С перемещается вдоль оси x с постоянной скоростью v0. В момент t=0 центр масс…

1.149. Балка массы m=300 кг и длины l=8,00 м лежит на двух опорах (рис. 1.27). Расстояния от концов балки до опор: l1=2,00 м, l2=1,00 м…

1.150. Лестница длины l=5,00 м и массы m=11,2 кг прислонена к гладкой стене под углом α=70° к полу (рис. 1.28). Коэффициент трения между лестницей и…

1.152. Невесомая нерастяжимая нить скользит без трения по прикрепленному к стене желобу (рис. 1.29) под действием грузов, массы которых m1=1,00 кг…

1.153. На рис. 1.30 изображены две частицы 1 и 2, соединенные жестким стержнем. Могут ли скорости частиц быть такими, как на рисунке? Частицы и скорости лежат…

1.154. Две частицы (материальные точки) с массами m1 и m2 соединены жестким невесомым стержнем длины l. Найти момент инерции I этой системы…

1.155. Найти момент инерции I однородного круглого прямого цилиндра массы m и радиуса R относительно оси цилиндра.

1.159. Найти момент инерции тонкого однородного стержня длины l и массы m относительно перпендикулярной к стержню оси, проходящей через: а) центр масс стержня,…

1.160. Найти момент инерции однородной прямоугольной пластинки массы m, длины a и ширины b относительно перпендикулярной к ней оси, проходящей через: а) центр…

1.165. Найти главные моменты инерции тонкого однородного диска массы m и радиуса R. Иметь в виду, что вычисление целесообразно производить в полярных координатах…

1.168. Найти момент инерции однородного тела, имеющего форму диска, в котором сделан квадратный вырез. Одна из вершин выреза совпадает с центром диска. Радиус…

1.170. Использовать ответ предыдущей задачи для нахождения момента инерции I тонкого однородного диска относительно оси, лежащей в плоскости диска и проходящей…

1.180. Однородный шар радиуса R и массы m вращается с угловой скоростью ω вокруг оси, проходящей через его центр. Найти момент импульса M шара относительно…

1.185. На горизонтальном столе лежат два тела, которые могут скользить по столу без трения. Тела связаны невесомой нерастяжимой нитью (рис. 1.34). Такая же нить,…

1.187. Тонкий стержень длины l=1,00 м и массы m=0,600 кг может вращаться без трения вокруг перпендикулярной к нему горизонтальной оси, отстоящей от центра стержня…

1.189. Столб высоты h=3,00 м и массы m=50,0 кг падает из вертикального положения на Землю. Определить модуль момента импульса M столба относительно точки опоры…

1.190. Линейка массы m=0,1200 кг и длины l=1,000 м лежит на гладком столе. По точке, отстоящей от центра линейки на расстояние a=40,0 см (рис. 1.35), наносится…

1.191. Однородный шарик помещен на плоскость, образующую угол α=30,0° с горизонтом (рис. 1.36). 1. При каких значениях коэффициента трения k шарик будет…

1.192. Однородному цилиндру сообщают начальный импульс, в результате чего он начинает катиться без скольжения вверх по наклонной плоскости со скоростью v0=3,00…

1.194. На горизонтальной плоскости лежит катушка, масса которой m=50,0 г, а момент инерции относительно ее оси I=5,00*10-6 кг*м2. На катушку…

1.195. Однородный сплошной цилиндр массы m=1,00 кг висит в горизонтальном положении на двух намотанных на него невесомых нитях (рис. 1.38). Цилиндр отпускают…

1.196. Блок радиуса R может вращаться вокруг своей оси с трением, характеризуемым вращающим моментом Nтр, который не зависит от скорости вращения блока…

1.198. Имеются два одинаковых однородных диска. Один из них может вращаться без трения вокруг вертикальной фиксированной оси, проходящей через его центр. Этот…

1.199. Горизонтально расположенный деревянный стержень массы m=0,800 кг и длины l=1,80 м может вращаться вокруг вертикальной оси, проходящей через его середину…

1.201. Горизонтальный диск массы m и радиуса R может вращаться вокруг вертикальной оси, проходящей через его центр. На краю диска стоит человек массы m'. Вначале…

Источник: http://exir.ru/other/savelev/mehanika_tverdogo_tela.htm

Biz-books
Добавить комментарий