1.2 Динамика материальной точки и поступательного движения твердого тела

Лекция на тему Динамика

1.2 Динамика материальной точки и поступательного движения твердого тела

Лекция №2 «Динамика материальной точки и твердого тела»

  1. Основные понятия динамики

  2. Законы Ньютона

2.1 Первый закон Ньютона

2.2 Второй закон Ньютона

2.3 Третий закон Ньютона

3. Динамика поступательного движения системы материальных точек и твердого тела

4. Динамика вращательного движения материальной точки и твердого тела

5. Силы в природе

5.1 Сила тяжести. Закон Всемирного тяготения.

5.2 Сила трения

5.3 Сила упругости

5.4 Силы инерции

1. Основные понятия динамики

Динамикой называют раздел механики, который изучает движение тел, исходя из причин, влияющих на характер движения.

Причиной, определяющей характер движения и его изменения, является взаимодействия тел.

Взаимодействие может осуществляться как

  • Полевое взаимодействие (между удаленными объектами, например, гравитационное);
  • Контактное взаимодействие (при непосредственном контакте тел, например, трение).

Полевое взаимодействие обусловлено способностью тел изменять свойства окружающего пространства. Изменение свойств выражается в том, что на удаленные тела действует сила.

Принято говорить, что тело создает вокруг себя поле, которое действует на другие тела.

Реально любое взаимодействие является полевым, но некоторые взаимодействия становятся значительными только при сильном сближении (при контакте), в этом случае удобно пользоваться предоставлениями о контактном взаимодействии.

По природе все взаимодействия принято делить на четыре типа:

  • гравитационное,
  • слабое,
  • электромагнитное,
  • сильное.

Гравитационное взаимодействие (ГВ) присуще всем без исключения материальным объектам во Вселенной и проявляется на притяжении тел друг к другу. ГВ действует на больших расстояниях, но в микромире ничтожно мало.

Электромагнитное взаимодействие (ЭМВ) определяет структуру, атомов и молекул всех веществ. Поэтому определенным образом именно электромагнитное взаимодействие определяет свойства и поведение всех окружающих нас тел. ЭМВ, как и ГВ, обладает свойством дальнодействия.

Сильное взаимодействие (СВ) определяет структуру фундаментальных частиц материи – протонов и нейтронов, а так же структуру ядер атомов. Характерной особенностью СВ является то, что оно проявляется только на очень малых расстояниях порядка размеров ядер атомов 10-15 м.

Слабое взаимодействие (СлВ) – специфическое взаимодействие, присущее элементарным частицам и обуславливающее их распады. При низких энергиях СлВ имеет короткодействующий характер с радиусом действия порядка 10-17 м. При очень больших энергиях (доступных только на новейших ускорителях) СлВ объединяется с ЭМВ в единое электрослабое взаимодействие.

Одной из важных задач, решить которую пытаются физики-теоретики, является создание единой теории, объединяющей все взаимодействия, существующие в природе, в одно. На этом пути достигнуты определенные успехи.

С прошлого века мы пользуемся единой теорией электромагнетизма, тогда как первоначально электрические и магнитные взаимодействия рассматривались как имеющие разную природу.

В начале 60-х годов нашего века была разработана электрослабая теория, объединившая слабое и электромагнитное взаимодействия, рассматриваемые в ней как два разных проявления одного более фундаментального электрослабого взаимодействия. Несмотря на успехи электрослабой теории и ряда других теорий, единой теории поля в настоящее время не существует.

2.1 Первый закон Ньютона

В основе динамики лежат законы динамики – система трёх взаимосвязанных законов Ньютона, сформулированных им в 1687 году.

Первый закон Ньютона: Существуют такие системы отчета, относительно которых материальная точка будет двигаться прямолинейно и равномерно или находиться в состоянии покоя, если на нее не действуют силы, или сумма действующих сил равна нулю.

Любое тело препятствует изменению своего движения – такая способность называется инерционностью, и первый закон Ньютона часто называют законом инерции.

Первый закон Ньютона определяет и утверждаетсуществования систем отсчета, называемых инерциальными системами отсчета (ИСО), в которых первый закон Ньютона выполняется по определению.

Инерциальная система отсчета – система отсчета, относительно которой свободная материальная точка не подверженная взаимодействию других тел, движется равномерно и прямолинейно.

Неинерциальная система отсчета – система отсчета, движущаяся относительно инерциальной системы отсчета с ускорением.

Опытным путем установлено, что инерциальной можно считать гелиоцентрическую (звездную) систему отсчета (начало координат находится в центре Солнца, а оси проведены в направлении определенных звезд).

Система отсчета, связанная с Землёй, строго говоря, неинерциальна, однако эффекты, обусловленные её неинерциальностью (Земля вращается вокруг собственной оси и вокруг Солнца), при решении многих задач пренебрежимо малы, и в этих случаях её можно считать инерциальной.

2.2 Второй закон Ньютона

Из опыта известно, что при одинаковых воздействиях различные тела неодинаково изменяют скорость своего движения, т. е., иными словами, приобретают различные ускорения. Ускорение зависит не только от величины воздействия, но и от свойств самого тела (от его массы).

Масса тела – физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные (инертная масса) и гравитационные (гравитационная масса) свойства. В настоящее время можно считать доказанным, что инертная и гравитационная массы равны друг другу (с точностью, не меньшей 10-12 их значения)

[m] = [кг ]

Измерить массу тела, значит сравнить её с массой тела-эталона, принятой за единицу. В качестве такого эталона массы, как известно, принят 1 килограмм – это масса платиноиридиевого цилиндра, который хранится в Международном бюро мер и весов в Севре, близ Парижа во Франции.

Чтобы описывать воздействия, упоминаемые в первом законе Ньютона, вводят понятие силы. Под действием сил тела либо изменяют скорость движения, т. е., приобретают ускорения (динамическое проявление сил), либо деформируются, т. е., изменяют свою форму и размеры (статическое проявление сил).

В каждый момент времени сила характеризуется числовым значением, направлением в пространстве и точкой приложения.

Итак, сила – векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.

[F] = [Н]

Важным законом динамики материальной точки является второй закон Ньютона, который указывает, как меняется движение тел под действием приложенных к нему сил.

Второй закон Ньютона:Если на материальную точку действует сила , то материальная точка движется с ускорением , которое совпадает по направлению с силой и по величине прямо пропорционально величине силы F.

~

В качестве коэффициента пропорциональности используется масса тела.

С учетом массы второй закон Ньютона можно записать:

или

Поскольку , то , мы учли, что в нерелятивистской механике , и внесли массу под знак производной.

Физическая величина, численно равная произведению массы тела на его скорость называется импульсом или количеством движения.

,

Используя импульс, запишем второй закон в более общем виде, который получен И. Ньютоном.

Общий вид второго закона Ньютона (закон Ньютона в импульсной форме):

Исходя из этого выражения, скорость изменения импульса материальной точки равно силе, действующей на материальную точку.

Если на материальную точку действует несколько сил, то является результирующей сил. Второй закон Ньютона, как все законы Ньютона, справедлив только в ИСО.

По второму закону Ньютона в инерциальной системе отсчета ускорение тела равно отношению действующей на это тело силы к массе тела: .

По определению, среднее ускорение тела равно отношению изменению скорости тела ко времени, за которое это изменение произошло: .

Подставляя ускорение во второй закон Ньютона, получаем:

Импульсом силы называется векторная физическая величина, равная произведению силы на интервал времени её действия: .

Импульс силы в системе СИ измеряется —

2.3 Третий закон Ньютона

Третий закон Ньютона (закон действия и противодействия): Два тела взаимодействуют друг с другом силами, равными по величине и противоположно направленными:

  1. Динамика поступательного движения системы

материальных точек и твёрдого тела.

Совместное применение второго и третьего законов Ньютона позволяет описать динамику поступательного движения системы материальных точек и твёрдого тела.

Механическая система – совокупность тел, движение которых будет рассматриваться.

Силы взаимодействия между телами системы называются внутренними силами.

Тело (или частицы), не входящие в состав рассматриваемой системы, называют внешними телами, а силы, с которыми они действуют на тела системы – внешними силами .

Замкнутой системой взаимодействующих тел называется такая система, для которой векторная сумма действующих на неё внешних сил (то есть равнодействующая внешних сил) равная нулю: или, другими словами, система тел называется замкнутой, если на неё не действуют внешние силы или действие этих сил компенсировано.

Система материальных точек – совокупность nматериальных точек m1,m2 … mn, рассматриваемых как единое целое.

Запишем второй закон Ньютона для всех n материальных точек системы:

Здесь — внутренние силы, действующие на i-ю точку со стороны j-й точки, — суммарная внешняя сила, действующая на i-ю точку.

Сложим все уравнения:

,

Последнее слагаемое является суммой всех внешних сил.

По третьему закону Ньютона , следовательно, каждая скобка равна нулю. Тогда получаем

,

где — суммарная внешняя сила, действующая на всю систему.

Введем некоторую абстрактную точку с радиус-вектором

,

которую назовем центром масс системы и, соответственно, — радиус-вектором центра масс. В частности, для материальных точек одинаковой массы получим .

Обозначим массу всей системы , тогда

.

Продифференцируем это выражение по времени, учитывая, что массы постоянны.

.

Так как — скорость i-й точки, а вводя — скорость центра масс, мы получаем

или ,

где — импульс iй точки, а — импульс системы, равный суммарному импульсу всех точек системы.

Полученное выражение еще раз продифференцируем во времени, учитывая, что , и вводя — ускорение центра масс, тогда

.

Поскольку , то мы получаем второй закон Ньютона для системы материальных точек – основной закон динамики поступательного движенияпроизведение массы системы на ускорение центра масс равно суммарной внешней силе.

.

Или, по аналогии со вторым законом Ньютона для одной материальной точки, ускорение центра масс системы прямо пропорционально суммарной внешней силе, действующей на систему, и обратно пропорционально суммарной массе всех точек системы.

Второй закон Ньютона для системы материальных точек имеет такой же вид, как второй закон Ньютона для одной материальной точки.

Только вместо массы точки нужно брать суммарную массу системы, вместо суммарной силы – суммарную внешнюю силу. Также вместо импульса точки необходимо использовать суммарный импульс всех точек.

Вместо радиус-вектора материальной точки — радиус-вектор центра масс системы материальных точек.

В качестве системы материальных точек может быть выбрано абсолютно твёрдое тело.

Все введенные величины и полученные для системы законы могут быть использованы для абсолютно твёрдого тела, но только при поступательном движении.

Поскольку, если тело движется поступательно, то все точки тела движутся так же, как центр масс , тогда полученный закон описывает движение всех точек, а значит, движение всего тела.

  1. Динамика вращательного движения системы

материальных точек и твёрдого тела.

Вращательным движением твердого тела называют движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. Ось вращения может находиться вне тела.

Количественной мерой вращательного воздействия является не сила, а момент силы.

Момент силы (вращающий момент) – характеризует способность силы сообщать покоящемуся телу вращательное движение вокруг оси, относительно которой он берется, и изменять характер этого вращения.

Момент силы относительно неподвижной оси Z равен:

, где

R – расстояние от точки силы до оси;

D – расстояние от прямой действия силы до оси – плечо силы относительно оси.

При вращательном движении аналогом импульса является момент импульса.

Моментом импульса материальной точки относительно оси Z называется скалярная величина L, равная произведению импульса материальной точки на плечо:

Продифференцируем выражение, определяющее момент импульса:

.

Таким образом получено выражение, являющееся вторым законом Ньютона для вращательного движения или основным законом динамики вращательного движения: скорость изменения момента импульса равна моменту приложенной силы .

Полученный закон справедлив только в инерциальных системах отсчета.

Момент импульса абсолютно твердого теларавен сумме моментов импульсов всех материальных точек, составляющих тело:

Найдем момент импульса абсолютно твердого тела, вращающегося относительно неподвижной оси. Разобьем тело на N материальных точек массами , движущихся с линейными скоростями. Угловая скорость для всех точек тела одинакова. Момент импульса для i-й материальной точки равен

,

где — расстояние от i-й материальной точки до оси вращения. Тогда момент импульса тела будет равен:

Вынося за знак суммы угловую скорость, получим:

В этом выражении появилась новая величина, которая является характеристикой тела только при вращательном движении. Она называется моментом инерции абсолютно твердого тела относительно оси.

Момент инерции – скалярная физическая величина, численно равная сумме произведений N масс материальных точек на квадрат расстояния до рассматриваемой оси:

,

Тогда момент импульса твердого тела относительно оси будет равен произведению момента инерции тела относительно этой оси на угловую скорость вращения:

Введенный момент инерции тела при вращательном движении имеет такое же значение, какое имеет масса тела при поступательном движении, то есть моментинерции служит количественной мерой инертных свойств тела, только уже при вращательном движении.

Используя момент инерции, основной закон динамики вращательного движения можно переписать в виде:

Определим момент инерции тела произвольной формы. По определению момента инерции и переходя к пределу бесконечно большого числа материальных точек физически бесконечно малого объема, получим:

Или учитывая, что плотность тела , получим

В общем случае для тел сложной формы вычисление интеграла оказывается математически весьма трудоемким, причем результат не всегда представим в аналитических функциях.

Для простых симметричных тел при нахождении момента инерции относительно оси симметрии интегралы легко вычисляются.

Рассмотрим результаты вычисления момента инерции относительно осей симметрии для часто встречающихся тел вращения:

  1. Момент инерции бесконечно тонкого кольца массой m, радиусом R относительно оси симметрии, перпендикулярной плоскости кольца, будет равен

  1. Момент инерции диска (цилиндра) массой m, радиусом R относительно оси симметрии, направленной вдоль направляющей цилиндра, будет равен

  1. Момент инерции бесконечно тонкого стержня массой m, длиной l относительно оси, проходящей через середину стержня и перпендикулярной ему, будет равен

  1. Момент инерции шара массой m, радиусом R относительно оси симметрии будет равен

Все приведенные выше моменты сил вычислены относительно осей, проходящих через центр масс. Момент инерции относительно оси, не проходящей через центр масс, можно найти по теореме Штейнера.

Теорема Штейнера: момент инерции относительно произвольной оси равен сумме момента инерции относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями:

5. Силы в природе

5.1 Сила тяжести. Закон Всемирного тяготения

По второму закону Ньютона причиной изменения движения, т. е. причиной ускорения тел, является сила. В механике рассматриваются силы различной физической природы. Многие механические явления и процессы определяются действием сил тяготения.

Закон всемирного тяготения был открыт И. Ньютоном в 1682 году. По его гипотезе между всеми телами Вселенной действуют силы притяжения (гравитационные силы), направленные по линии, соединяющей центры масс.

Закон Всемирного тяготения: Все тела притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними:

Коэффициент пропорциональности G одинаков для всех тел в природе. Его называют гравитационной постоянной:

Многие явления в природе объясняются действием сил всемирного тяготения. Движение планет в Солнечной системе, искусственных спутников Земли, траектории полета баллистических ракет, движение тел вблизи поверхности Земли – все они находят объяснение на основе закона всемирного тяготения и законов динамики.

Одним из проявлений силы всемирного тяготения является сила тяжести. Так принято называть силу притяжения тел к Земле вблизи ее поверхности. Если M – масса Земли, RЗ – ее радиус, m – масса данного тела, то сила тяжести равна

где gускорение свободного падения у поверхности Земли:

Сила тяжести направлена к центру Земли. В отсутствие других сил тело свободно падает на Землю с ускорением свободного падения. Среднее значение ускорения свободного падения для различных точек поверхности Земли равно 9,81 м/с2.

Если тело находится на опоре или подвесе, то возникают силы, равные силе тяжести и называемые силой реакции опоры () и силой натяжения подвеса ().

Сила, с которой тело действует на опору или подвес, называется весом тела (Р).

Вес тела, движущегося с ускорением а, направленным вниз, на поверхности Земли равен: .

Вес тела, движущегося с ускорением а, направленным вверх, на поверхности Земли равен: .

Если тело падает свободно, ускорение равно ускорению свободного падения (на поверхности Земли a=g).

Состояние тела, при котором оно движется только под действием силы тяжести, т.е. если вес тела равен нулю, то тело находится в состоянии невесомости.

Сила гравитации имеет гравитационную природу взаимодействия.

5.2 Сила трения

Трение – один из видов взаимодействия тел. Оно возникает при соприкосновении двух тел.

Трение, как и все другие виды взаимодействия, подчиняется третьему закону Ньютона: если на одно из тел действует сила трения, то такая же по модулю, но направленная в противоположную сторону сила действует и на второе тело.

Силы трения имеют электромагнитную природу. Они возникают вследствие взаимодействия между атомами и молекулами соприкасающихся тел.

Силами сухого трения называют силы, возникающие при соприкосновении двух твердых тел при отсутствии между ними жидкой или газообразной прослойки. Они всегда направлены по касательной к соприкасающимся поверхностям.

Сухое трение, возникающее при относительном покое тел, называют трением покоя. Сила трения покоя всегда равна по величине внешней силе и направлена в противоположную сторону.

Сила трения покоя не может превышать некоторого максимального значения (Fтр)max. Если внешняя сила больше (Fтр)max, возникает относительное проскальзывание. Силу трения в этом случае называют силой трения скольжения.

Она всегда направлена в сторону, противоположную направлению движения и зависит от относительной скорости тел.

Однако, во многих случаях приближенно силу трения скольжения можно считать независящей от величины относительной скорости тел и равной максимальной силе трения покоя.

Опыт показывает, что сила трения скольжения пропорциональна силе нормального давления тела на опору, а следовательно, и силе реакции опоры :

Коэффициент пропорциональности μ называют коэффициентом трения скольжения.

Коэффициент трения μ – величина безразмерная, меньшая единицы. Он зависит от материалов соприкасающихся тел и от качества обработки поверхностей. При скольжении сила трения направлена по касательной к соприкасающимся поверхностям в сторону, противоположную относительной скорости.

При движении твердого тела в жидкости или газе возникает силa вязкого трения. Сила вязкого трения значительно меньше силы сухого трения. Она также направлена в сторону, противоположную относительной скорости тела. При вязком трении нет трения покоя.

Сила вязкого трения сильно зависит от скорости тела. При достаточно малых скоростях Fтр~υ, при больших скоростях Fтр~υ2. При этом коэффициенты пропорциональности в этих соотношениях зависят от формы тела.

Силы трения возникают и при качении тела. Однако силы трения качения обычно достаточно малы. При решении простых задач этими силами пренебрегают.

5.3 Сила упругости

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости.

Простейшим видом деформации являются деформации растяжения и сжатия.

При малых деформациях (|x|

Источник: https://infourok.ru/lekciya-na-temu-dinamika-755242.html

Динамика материальной точки и поступательного движения твердого тела

1.2 Динамика материальной точки и поступательного движения твердого тела

Сохрани ссылку в одной из сетей:

Первый закон Ньютона: всякаяматериальная точка (тело) сохраняетсостояние покоя или равномерногопрямолинейного движения до тех пор,пока воздействие со стороны других телне заставит ее изменить это состояние.Стремление тела сохранять состояниепокоя или равномерного прямолинейногодвижения называется инертностью.Поэтому первый закон Ньютона называюттакже законом инерции.

Первый закон Ньютона выполняетсяне во всякой системе отсчета, а тесистемы, по отношению к которым онвыполняется, называются инерциальнымисистемами отсчета.

Масса тела — физическаявеличина, являющаяся одной из основныххарактеристик материи, определяющаяее инерционные (инертная масса) игравитационные (гравитационная масса)свойства. В настоящее время можно считатьдоказанным, что инертная и гравитационнаямассы равны друг другу (с точностью, неменьшей 10–12 их значения).

Итак, сила — это векторнаявеличина, являющаяся мерой механическоговоздействия на тело со стороны другихтел или полей, в результате котороготело приобретает ускорение или изменяетсвою форму и размеры.

Второйзакон Ньютона

Второй закон Ньютона — основнойзакон динамики поступательного движения— от­вечает на вопрос, как изменяетсямеханическое движение материальнойточки (тела) под действием приложенныхк ней сил.

а ~ F = const). (6.1)

а ~ 1/т (F =const). (6.2)

а = kF/m. (6.3)

В СИ коэффициент пропорциональностиk= 1. Тогда

или

(6.4)

(6.5)

Векторная величина

(6.6)

численно равная произведениюмассы материальной точки на ее скоростьи имеющая направление скорости, называетсяимпульсом (количеством движения)этой материаль­ной точки.

Подставляя (6.6) в (6.5), получим

(6.7)

Выражение (6.7) называется уравнениемдвижения материальной точки.

Единица силы в СИ — ньютон(Н): 1 Н — сила, которая массе 1 кг сообщаетускорение 1 м/с2 в направлениидействия силы:

1 Н = 1 кгм/с2.

Второй закон Ньютона справедливтолько в инерциальных системах отсчета.Первый закон Ньютона можно получить извторого.

В механике большое значениеимеет принцип независимости действиясил: если на материальную точкудействует одновременно несколько сил,то каждая из этих сил сообщает материальнойточке ускорение согласно второму законуНьютона, как будто других сил не было.

Третийзакон Ньютона

Взаимодействие между материальнымиточками (телами) определяется третьимзако­ном Ньютона.

F12= – F21, (7.1)

Третий закон Ньютона позволяетосуществить переход от динамики отдельнойматериальной точки к динамике системыматериальных точек.

Силытрения

В меха­нике мы будем рассматриватьразличные силы: трения, упругости,тяготения.

Силы трения, которыепрепятствуют скольжению соприкасающихсятел друг относительно друга.

Внешним трением называетсятрение, возникающее в плоскости касаниядвух соприкасающихся тел при ихотносительном перемещении.

В зависимости от характера ихотносительного движения говорят отрении скольжения, качения иливерчения.

Внутренним трением называетсятрение между частями одного и того жетела, например между различными слоямижидкости или газа.

Если тела скользятотносительно друг друга и разделеныпрослойкой вязкой жидкости (смазки), тотрение происходит в слое смазки.

В такомслучае говорят о гидродинамическомтрении (слой смазки достаточно толстый)и граничном трении (толщина смазоч­нойпрослойки 0,1 мкм именьше).

Сила трения скольжения Fтрпропорциональна силе N нормальногодавления, с которой одно тело действуетна другое:

Fтр= fN,

где f—коэффициент трения скольжения, зависящийот свойств соприкасающихся поверхностей.

В пре­дельном случае (началоскольжения тела) F=Fтр.или Psin0 = fN = fPcos0,откуда

f=tg0.

Для гладких поверхностейопределенную роль начинает игратьмежмолекулярное притяжение. Для нихприменяется закон трения скольжения

Fтр= fист(N + Sp0),

где р0 добавочноедавление, обусловленное силамимежмолекулярного притяжения, которыебыстро уменьшаются с увеличениемрасстояния между частицами; S пло­щадь контакта между телами; fист — истинныйкоэффициент трения скольжения.

Радикальным способом уменьшениясилы трения является замена тренияскольже­ния трением качения (шариковыеи роликовые подшипники и т. д.). Силатрения качения определяется по закону,установленному Кулоном:

Fтр=fкN/r, (8.1)

где r — радиускатящегося тела; fк— коэффициент трения качения, имеющийразмер­ность dimfк=L. Из (8.1) следует, что силатрения качения обратно пропорциональнарадиусу катящегося тела.

Законсохранения импульса. Центр масс

Совокуп­ность материальныхточек (тел), рассматриваемых как единоецелое, называется механическойсистемой. Силы взаимодействия междуматериальными точками механичес­койсистемы называются — внутренними.Силы, с которыми на материальные точкисистемы действуют внешние тела, называютсявнешними.

Механическая система тел,на которую не действуют внешние силы,называется замкнутой (илиизолированной). Если мы имееммеханическую систему, состоящую измногих тел, то, согласно третьему законуНьютона, силы, действующие между этимителами, будут равны и проти­воположнонаправлены, т. е.

геометрическая суммавнутренних сил равна нулю.

Запишем второй закон Ньютонадля каждого из n телмеханической системы:

Складывая почленно эти уравнения,получаем

Но так как геометрическая суммавнутренних сил механической системыпо третьему закону Ньютона равна нулю,то

или

(9.1)

где — импульс системы. Таким образом,производная по времени от им­пульсамеханической системы равна геометрическойсумме внешних сил, действующих насистему.

В случае отсутствия внешних сил(рассматриваем замкнутую систему)

Последнее выражение и являетсязаконом сохранения импульса: импульсзамкнутой системы сохраняется, т. е. неизменяется с течением времени.

Эксперименты доказывают, что онвыпол­няется и для замкнутых системмикрочастиц (они подчиняются законамквантовой механики). Этот закон носитуниверсальный характер, т. е. законсохранения импуль­са — фундаментальныйзакон природы.

Закон сохранения импульсаявляется следствием определенногосвойства симмет­рии пространства —его однородности. Однородностьпространства заключается в том, чтопри параллельном переносе в пространствезамкнутой системы тел как целого еефизические свойства и законы движенияне изменяются, иными словами, не зависятот выбора положения начала координатинерциальной системы отсчета.

Центром масс (или центроминерции) системы материальных точекназывается воображаемая точка С,положение которой характеризуетраспределение массы этой системы. Еера­диус-вектор равен

где miи ri— соответственно масса и радиус-векторi-й материальной точки;n — число материальныхточек в системе; – масса системы. Скорость центра масс

Учитывая, что pi= mivi, a есть импульс р системы, можнонаписать

(9.2)

т. е. импульс системы равенпроизведению массы системы на скоростьее центра масс.

Подставив выражение (9.2) в уравнение(9.1), получим

(9.3)

т. е. центр масс системы движетсякак материальная точка, в которойсосредоточена масса всей системы и накоторую действует сила, равнаягеометрической сумме всех внешних сил,приложенных к системе. Выражение (9.3)представляет собой закон движенияцентра масс.

Источник: https://works.doklad.ru/view/FtHip5bIZJg.html

Biz-books
Добавить комментарий